Some results on Kronecker, Dirichlet and Helson sets

Thomas-William Korner

Annales de l'institut Fourier (1970)

  • Volume: 20, Issue: 2, page 219-324
  • ISSN: 0373-0956

Abstract

top
We construct the following: a perfect non Dirichlet set every proper closed subset of which is Kronecker, A weak Kronecker set which is not an R set; an independent countable Dirichlet set which is not Kronecker; a collection of q -disjoint Kronecker sets whose union is independent but Helson 1 / q ; A countable collection of disjoint Kronecker sets whose union is closed and independent but not Helson: a perfect independent Dirichlet set which is not Helson.

How to cite

top

Korner, Thomas-William. "Some results on Kronecker, Dirichlet and Helson sets." Annales de l'institut Fourier 20.2 (1970): 219-324. <http://eudml.org/doc/74016>.

@article{Korner1970,
abstract = {We construct the following: a perfect non Dirichlet set every proper closed subset of which is Kronecker, A weak Kronecker set which is not an $R$ set; an independent countable Dirichlet set which is not Kronecker; a collection of $q$-disjoint Kronecker sets whose union is independent but Helson $1/q$; A countable collection of disjoint Kronecker sets whose union is closed and independent but not Helson: a perfect independent Dirichlet set which is not Helson.},
author = {Korner, Thomas-William},
journal = {Annales de l'institut Fourier},
keywords = {approximation and series expansion},
language = {eng},
number = {2},
pages = {219-324},
publisher = {Association des Annales de l'Institut Fourier},
title = {Some results on Kronecker, Dirichlet and Helson sets},
url = {http://eudml.org/doc/74016},
volume = {20},
year = {1970},
}

TY - JOUR
AU - Korner, Thomas-William
TI - Some results on Kronecker, Dirichlet and Helson sets
JO - Annales de l'institut Fourier
PY - 1970
PB - Association des Annales de l'Institut Fourier
VL - 20
IS - 2
SP - 219
EP - 324
AB - We construct the following: a perfect non Dirichlet set every proper closed subset of which is Kronecker, A weak Kronecker set which is not an $R$ set; an independent countable Dirichlet set which is not Kronecker; a collection of $q$-disjoint Kronecker sets whose union is independent but Helson $1/q$; A countable collection of disjoint Kronecker sets whose union is closed and independent but not Helson: a perfect independent Dirichlet set which is not Helson.
LA - eng
KW - approximation and series expansion
UR - http://eudml.org/doc/74016
ER -

References

top
  1. [1] J. ARBAULT, Sur l'ensemble de convergence absolue d'une série trigonométrique, Bull. Soc. Math. France, t. 80, (1952), 254-317. Zbl0048.04202MR14,1080d
  2. [2] N. K. BARY, A Treatise on Trigonometric Series, Vol. II., English translation Pergamon Press, Oxford (1964). Zbl0129.28002MR30 #1347
  3. [3] J. W. S. CASSELS, An Introduction to Diophantine Approximation, Cambridge University Press, (1965). Zbl0077.04801
  4. [4] G. H. HARDY and E. M. WRIGHT, Introduction to the Theory of Numbers, 4th edition, Oxford University Press, (1959). Zbl0020.29201
  5. [5] S. HARTMAN and C. RYLL-NARDZEWSKI, Über die Spaltung von Fourierreihen fast periodischer Funktionen, Studia Mathematica 19, (1960) 287-295. Zbl0093.08301MR22 #9805
  6. [6] F. HAUDSORFF, Set Theory, English translation, Chelsea, New York (1957). Zbl0081.04601
  7. [7] E. HEWITT and K. A. ROSS, Abstract Harmonic Analysis, Springer Verlag, Berlin (1963). Zbl0115.10603
  8. [8] J.-P. KAHANE, Approximation par des exponentielles imaginaires ; ensembles de Dirichlet et ensembles de Kronecker. Journal of Approximation Theory 2, (1969). Zbl0195.07601
  9. [9] J.-P. KAHANE and R. SALEM, Ensembles Parfaits et Séries Trigonométriques, Hermann, Paris (1963). Zbl0112.29304MR28 #3279
  10. [10] Y. KATZNELSON, An Introduction to Harmonic Analysis. John Wiley and Sons, New York, (1968). Zbl0169.17902MR40 #1734
  11. [11] R. KAUFMAN, A Functional Method for Linear Sets, Israel J. Math. 5, (1967). Zbl0156.37403MR38 #4902
  12. [12] O. ORE, Theory of Graphs, American Mathematical Society Colloquium Publications, Vol. XXXVIII, A.M.S.: Rhode Island (1962). Zbl0105.35401MR27 #740
  13. [13] W. RUDIN, Fourier Analysis on Groups, John Wiley and Sons, New York, (1967). 
  14. [14] R. SALEM, Œuvres Mathématiques, Hermann, Paris (1967). Zbl0145.06901MR36 #22
  15. [15] I. WIK, Some Examples of Sets with Linear Independence, Ark. Mat. 5, (1965), 207-214. Zbl0127.29403
  16. [16] A. BERNARD and N.-Th. VAROPOULOS, Groupes des fonctions continues sur un compact, Studia Mathematica 35, (1970), 199-205. Zbl0199.46602
  17. [17] N.-Th. VAROPOULOS, Groups of Continuous Functions in Harmonic Analysis Acta. Math, 125, (1970), 109-154. Zbl0214.38102MR43 #7868
  18. [18] N.-Th. VAROPOULOS, Comptes Rendus Acad. Sci., Paris, 268, (1969), 954-957. Zbl0187.07301
  19. [19] N.-Th. VAROPOULOS, A problem on Kronecker sets, Studia Mathematica 37, (1970), 95-101. Zbl0202.14002MR42 #3493

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.