Some examples on quasi-barrelled spaces

Manuel Valdivia

Annales de l'institut Fourier (1972)

  • Volume: 22, Issue: 2, page 21-26
  • ISSN: 0373-0956

Abstract

top
The three following examples are given: a bornological space containing a subspace of infinite countable codimension which is not quasi-barrelled, a quasi-barrelled 𝒟 -space containing a subspace of infinite countable codimension which is not 𝒟 -space, and bornological barrelled space which is not inductive limit of Baire space.

How to cite

top

Valdivia, Manuel. "Some examples on quasi-barrelled spaces." Annales de l'institut Fourier 22.2 (1972): 21-26. <http://eudml.org/doc/74077>.

@article{Valdivia1972,
abstract = {The three following examples are given: a bornological space containing a subspace of infinite countable codimension which is not quasi-barrelled, a quasi-barrelled $\{\cal D\}\{\cal F\}$-space containing a subspace of infinite countable codimension which is not $\{\cal D\}\{\cal F\}$ -space, and bornological barrelled space which is not inductive limit of Baire space.},
author = {Valdivia, Manuel},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {21-26},
publisher = {Association des Annales de l'Institut Fourier},
title = {Some examples on quasi-barrelled spaces},
url = {http://eudml.org/doc/74077},
volume = {22},
year = {1972},
}

TY - JOUR
AU - Valdivia, Manuel
TI - Some examples on quasi-barrelled spaces
JO - Annales de l'institut Fourier
PY - 1972
PB - Association des Annales de l'Institut Fourier
VL - 22
IS - 2
SP - 21
EP - 26
AB - The three following examples are given: a bornological space containing a subspace of infinite countable codimension which is not quasi-barrelled, a quasi-barrelled ${\cal D}{\cal F}$-space containing a subspace of infinite countable codimension which is not ${\cal D}{\cal F}$ -space, and bornological barrelled space which is not inductive limit of Baire space.
LA - eng
UR - http://eudml.org/doc/74077
ER -

References

top
  1. [1] N. BOURBAKI, Éléments de Mathématiques, Livre V : Espaces vectoriels topologiques, (ch. III, ch. IV, ch. V), Paris (1964). 
  2. [2] J. DIEUDONNÉ, Sur les propriétés de permanence de certains espaces vectoriels topologiques, Ann. Soc. Polon. Math., 25, 50-55 (1952). Zbl0049.08202MR15,38b
  3. [3] A. GROTHENDIECK, Sur les espaces (F) et (DF), Summa Brasil. Math., 3, 57-123 (1954). Zbl0058.09803MR17,765b
  4. [4] A. GROTHENDIECK, Produits tensoriels topologiques et espaces nucléaires Mem. Math. Soc., 16 (1955). Zbl0064.35501MR17,763c
  5. [5] G. KOTHE, Topological Vector Spaces I, Berlin-Heidelberg-New York, Springer (1969). Zbl0179.17001MR40 #1750
  6. [6] M. VALDIVIA, A hereditary property in locally convex spaces, Ann. Inst. Fourier, 21, 1-2 (1971). Zbl0205.40903MR48 #11967
  7. [7] M. VALDIVIA, On final topologies, J. Reine angew. Math., 251, 193-199 (1971). Zbl0223.46003MR45 #4108
  8. [8] M. VALDIVIA, On D F spaces, Math. Ann., 191, 38-43 (1971). Zbl0204.12802MR43 #6694
  9. [9] M. VALDIVIA, A class of bornological barrelled spaces which are not ultrabornological, Math. Ann. 194, 43-51 (1971). Zbl0207.42701MR47 #2307
  10. [10] M. VALDIVIA, Absolutely convex sets in barrelled spaces, Ann. Inst. Fourier, 21, 3-13 (1971). Zbl0205.40904MR48 #11968

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.