On B r -completeness

Manuel Valdivia

Annales de l'institut Fourier (1975)

  • Volume: 25, Issue: 2, page 235-248
  • ISSN: 0373-0956

Abstract

top
In this paper it is proved that if { E n } n = 1 and { F n } n = 1 are two sequences of infinite-dimensional Banach spaces then H = n = 1 E n × n = 1 F n is not B r -complete. If { E n } n = 1 and { F n } n = 1 are also reflexive spaces there is on H a separated locally convex topology , coarser than the initial one, such that H [ ] is a bornological barrelled space which is not an inductive limit of Baire spaces. It is given also another results on B r -completeness and bornological spaces.

How to cite

top

Valdivia, Manuel. "On $B_r$-completeness." Annales de l'institut Fourier 25.2 (1975): 235-248. <http://eudml.org/doc/74226>.

@article{Valdivia1975,
abstract = {In this paper it is proved that if $\lbrace E_n\rbrace ^\infty _\{n=1\}$ and $\lbrace F_n\rbrace ^\infty _\{n=1\}$ are two sequences of infinite-dimensional Banach spaces then $H = \big ( \oplus ^\infty _\{n=1\} E_n\big ) \times \prod ^\infty _\{n=1\}F_n$ is not $B_r$-complete. If $\lbrace E_n\rbrace ^\infty _\{n=1\}$ and $\lbrace F_n\rbrace ^\infty _\{n=1\}$ are also reflexive spaces there is on $H$ a separated locally convex topology $\{\cal F\}$, coarser than the initial one, such that $H[\{\cal F\}]$ is a bornological barrelled space which is not an inductive limit of Baire spaces. It is given also another results on $B_r$-completeness and bornological spaces.},
author = {Valdivia, Manuel},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {235-248},
publisher = {Association des Annales de l'Institut Fourier},
title = {On $B_r$-completeness},
url = {http://eudml.org/doc/74226},
volume = {25},
year = {1975},
}

TY - JOUR
AU - Valdivia, Manuel
TI - On $B_r$-completeness
JO - Annales de l'institut Fourier
PY - 1975
PB - Association des Annales de l'Institut Fourier
VL - 25
IS - 2
SP - 235
EP - 248
AB - In this paper it is proved that if $\lbrace E_n\rbrace ^\infty _{n=1}$ and $\lbrace F_n\rbrace ^\infty _{n=1}$ are two sequences of infinite-dimensional Banach spaces then $H = \big ( \oplus ^\infty _{n=1} E_n\big ) \times \prod ^\infty _{n=1}F_n$ is not $B_r$-complete. If $\lbrace E_n\rbrace ^\infty _{n=1}$ and $\lbrace F_n\rbrace ^\infty _{n=1}$ are also reflexive spaces there is on $H$ a separated locally convex topology ${\cal F}$, coarser than the initial one, such that $H[{\cal F}]$ is a bornological barrelled space which is not an inductive limit of Baire spaces. It is given also another results on $B_r$-completeness and bornological spaces.
LA - eng
UR - http://eudml.org/doc/74226
ER -

References

top
  1. [1] N. BOURBAKI, Eléments de Mathématiques, Livre V : Espaces vectoriels topologiques, (Ch. III, Ch. IV, Ch. V), Paris, (1964). 
  2. [2] M. De WILDE, Réseaux dans les espaces linéaires à semi-normes, Mém. Soc. Royale des Sc. de Liège, 5e, série, XVIII, 2, (1969). Zbl0199.18103
  3. [3] J. DIEUDONNE, Sur les espaces de Montel metrizables, C.R. Acad. Sci. Paris, 238, (1954), 194-195. Zbl0055.09801
  4. [4] J. DIEUDONNE, Sur les propriétés de permanence de certains espaces vectoriels topologiques, Ann. Soc. Polon. Math., 25 (1952), 50-55. Zbl0049.08202
  5. [5] G. KÖTHE, Topological Vector Spaces I, Berlin-Heidelberg-New York, Springer (1969). Zbl0179.17001
  6. [6] G. KÖTHE, Über die Vollstandigkeit einer Klasse lokalconveser Räume, Math. Nachr. Z., 52, (1950), 627-630. Zbl0036.07901
  7. [7] J.T. MARTI, Introduction to the theory of Bases, Berlin-Heidelberg-New York, Springer (1969). Zbl0191.41301
  8. [8] V. PTAK, Completeness and the open mapping theorem, Bull. Soc. Math. France., 86 (1958), 41-47. Zbl0082.32502
  9. [9] M. VALDIVIA, A class of bornological barrelled spaces which are not ultrabornological, Math. Ann., 194 (1971), 43-51. Zbl0207.42701
  10. [10] M. VALDIVIA, Some examples on quasi-barrelled spaces, Ann. Inst. Fourier, 22 (1972), 21-26. Zbl0226.46005
  11. [11] M. VALDIVIA, On nonbornological barrelled spaces, Ann. Inst. Fourier, 22 (1972), 27-30. Zbl0226.46006
  12. [12] M. VALDIVIA, On countable strict inductive limits, Manuscripta Mat., 11 (1971), 339-343. Zbl0278.46002
  13. [13] M. VALDIVIA, A hereditary property in locally convex spaces, Ann. Inst. Fourier, 21 (1971), 1-2. Zbl0205.40903
  14. [14] M. VALDIVIA, Absolutely convex sets in barrelled spaces, Ann. Inst. Fourier, 21 (1971), 3-13. Zbl0205.40904
  15. [15] M. VALDIVIA, The space of distributions Dʹ (Ω) is not Br-complete, Math. Ann., 211 (1974), 145-149. Zbl0288.46033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.