The density of the area integral in + n + 1

Richard F. Gundy; Martin L. Silverstein

Annales de l'institut Fourier (1985)

  • Volume: 35, Issue: 1, page 215-229
  • ISSN: 0373-0956

Abstract

top
Let u ( x , y ) be a harmonic function in the half-plane R + n + 1 , n 2 . We define a family of functionals D ( u ; r ) , - > r > , that are analogs of the family of local times associated to the process u ( x t , y t ) where ( x t , y t ) is Brownian motion in R + n + 1 . We show that D ( u ) = sup r D ( u ; r ) is bounded in L p if and only if u ( x , y ) belongs to H p , an equivalence already proved by Barlow and Yor for the supremum of the local times. Our proof relies on the theory of singular integrals due to Caldéron and Zygmund, rather than the stochastic calculus.

How to cite

top

Gundy, Richard F., and Silverstein, Martin L.. "The density of the area integral in ${\mathbb {R}}^{n+1}_+$." Annales de l'institut Fourier 35.1 (1985): 215-229. <http://eudml.org/doc/74666>.

@article{Gundy1985,
abstract = {Let $u(x,y)$ be a harmonic function in the half-plane $\{\bf R\}_+^\{n+1\}$, $n\ge 2$. We define a family of functionals $D(u;r), -\infty &gt;r&gt;\infty $, that are analogs of the family of local times associated to the process $u(x_ t,y_ t)$ where $(x_ t,y_ t)$ is Brownian motion in $\{\bf R\}_+^\{n+1\}$. We show that $D(u)=\sup _\{r\} D(u;r)$ is bounded in $L^ p$ if and only if $u(x,y)$ belongs to $H^ p$, an equivalence already proved by Barlow and Yor for the supremum of the local times. Our proof relies on the theory of singular integrals due to Caldéron and Zygmund, rather than the stochastic calculus.},
author = {Gundy, Richard F., Silverstein, Martin L.},
journal = {Annales de l'institut Fourier},
keywords = {Brownian motion; singular integrals},
language = {eng},
number = {1},
pages = {215-229},
publisher = {Association des Annales de l'Institut Fourier},
title = {The density of the area integral in $\{\mathbb \{R\}\}^\{n+1\}_+$},
url = {http://eudml.org/doc/74666},
volume = {35},
year = {1985},
}

TY - JOUR
AU - Gundy, Richard F.
AU - Silverstein, Martin L.
TI - The density of the area integral in ${\mathbb {R}}^{n+1}_+$
JO - Annales de l'institut Fourier
PY - 1985
PB - Association des Annales de l'Institut Fourier
VL - 35
IS - 1
SP - 215
EP - 229
AB - Let $u(x,y)$ be a harmonic function in the half-plane ${\bf R}_+^{n+1}$, $n\ge 2$. We define a family of functionals $D(u;r), -\infty &gt;r&gt;\infty $, that are analogs of the family of local times associated to the process $u(x_ t,y_ t)$ where $(x_ t,y_ t)$ is Brownian motion in ${\bf R}_+^{n+1}$. We show that $D(u)=\sup _{r} D(u;r)$ is bounded in $L^ p$ if and only if $u(x,y)$ belongs to $H^ p$, an equivalence already proved by Barlow and Yor for the supremum of the local times. Our proof relies on the theory of singular integrals due to Caldéron and Zygmund, rather than the stochastic calculus.
LA - eng
KW - Brownian motion; singular integrals
UR - http://eudml.org/doc/74666
ER -

References

top
  1. [1] M. BARLOW and M. YOR, (Semi) Martingale Iequalities and Local Times, A. Wahrsch. Verw. Gebiete, 55 (1981), 237-254. Zbl0451.60050MR82h:60092
  2. [2] M. BARLOW and M. YOR, Semi-martingale Inequalities Via the Garsia-Rodemich-Rumsey Lemma, and Applications to Local Times, J. Funct. Anal., 49, 2 (1982), 198-229. Zbl0505.60054MR84f:60073
  3. [3] A. BENEDEK, A.P. CALDERON and R. PANZONE, Convolution Operators on Banach Space Valued Functions, Proc. Natl. Acad. Sci. U.S.A., 48, 3 (1962), 356-365. Zbl0103.33402MR24 #A3479
  4. [4] D. BURKHOLDER and R. GUNDY, Distribution Function Inequalities for the Area Integral, Studia Mathematica, 44 (1972), 527-544. Zbl0219.31009MR49 #5309
  5. [5] H. FEDERER, Geometric Measure Theory, Springer-Verlag, New York (1969). Zbl0176.00801MR41 #1976
  6. [6] R. FEFFERMAN, R. GUNDY, M. SILVERSTEIN and E.M. STEIN, Inequalities for Ratios of Functionals of Harmonic Functions, Proc. Natl. Acad. Sci. U.S.A., 79 (1982), 7958-7960. Zbl0512.31008MR85c:42024
  7. [7] C. FEFFERMAN and E.M. STEIN, Hp Spaces of Several Variables, Acta Math, 129 (1972), 137-193. Zbl0257.46078MR56 #6263
  8. [8] A.M. GARSIA, E. RODEMICH and H. RUMSEY Jr., A Real variable Lemma and the Continuity of Paths of Some Gaussian Processes, Indiana Univ. Math. J., 20 (1970-1971), 565-578. Zbl0252.60020MR42 #2534
  9. [9] R.F. GUNDY, The Density of the Area Integral in Conference on Harmonic Analysis in Honor of A. Zygmund, Eds., Beckner, W. Calderón, A.P., Fefferman, R., and Jones, P. ; Wadsworth, Belmont, California (1983). 
  10. [10] E.M. STEIN, Singular Integral a Differentiability Properties of Functions, Princeton, 1970. Zbl0207.13501MR44 #7280

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.