Opérateurs de Hecke pour Γ 0 ( N ) et fractions continues

Loïc Merel

Annales de l'institut Fourier (1991)

  • Volume: 41, Issue: 3, page 519-537
  • ISSN: 0373-0956

Abstract

top
We recall that Manin describes the singular homology relative to the cusps of the modular curve X 0 ( N ) as a quotient of the group Z ( P 1 ( Z / N Z ) ) . Using continued fractions techniques, we give an expression, which is independant of N , of a lift of Hecke operators from H 1 ( X 0 ( N ) , c u s p s , Z ) to Z ( P 1 ( Z / N Z ) )

How to cite

top

Merel, Loïc. "Opérateurs de Hecke pour $\Gamma _0(N)$ et fractions continues." Annales de l'institut Fourier 41.3 (1991): 519-537. <http://eudml.org/doc/74928>.

@article{Merel1991,
abstract = {Nous rappelons que Manin décrit l’homologie singulière relative aux pointes de la courbe modulaire $X_ 0(N)$ comme un quotient du groupe $\{\bf Z\}^\{(\{\bf P\}^ 1(\{\bf Z\}/N\{\bf Z\}))\}$. En s’appuyant sur des techniques de fractions continues, nous donnons une expression indépendante de $N$ d’un relèvement de l’action des opérateurs de Hecke de $H_ 1(X_ 0(N),ptes,\{\bf Z\})$ sur $\{\bf Z\}^\{(\{\bf P\}^ 1(\{\bf Z\}/N\{\bf Z\}))\}$.},
author = {Merel, Loïc},
journal = {Annales de l'institut Fourier},
keywords = {modular symbols; Hecke operators; lifting},
language = {fre},
number = {3},
pages = {519-537},
publisher = {Association des Annales de l'Institut Fourier},
title = {Opérateurs de Hecke pour $\Gamma _0(N)$ et fractions continues},
url = {http://eudml.org/doc/74928},
volume = {41},
year = {1991},
}

TY - JOUR
AU - Merel, Loïc
TI - Opérateurs de Hecke pour $\Gamma _0(N)$ et fractions continues
JO - Annales de l'institut Fourier
PY - 1991
PB - Association des Annales de l'Institut Fourier
VL - 41
IS - 3
SP - 519
EP - 537
AB - Nous rappelons que Manin décrit l’homologie singulière relative aux pointes de la courbe modulaire $X_ 0(N)$ comme un quotient du groupe ${\bf Z}^{({\bf P}^ 1({\bf Z}/N{\bf Z}))}$. En s’appuyant sur des techniques de fractions continues, nous donnons une expression indépendante de $N$ d’un relèvement de l’action des opérateurs de Hecke de $H_ 1(X_ 0(N),ptes,{\bf Z})$ sur ${\bf Z}^{({\bf P}^ 1({\bf Z}/N{\bf Z}))}$.
LA - fre
KW - modular symbols; Hecke operators; lifting
UR - http://eudml.org/doc/74928
ER -

References

top
  1. [EZ] P. ERDÖS, S.K. ZAREMBA, The arithmetical function ∑d|n log d/d, Demonstratio Mathematica, vol.VI (1973). 
  2. [Hei] H. HEILBRONN, On the average length of a class of continued fractions, Number Theorical Analysis (Papers in honor of Edmund Landau), Plenum, New-York, 1966. Zbl0212.06503
  3. [Man 1] YU. MANIN, Parabolic points and zeta functions of modular curves, Math. USSR Izvestija, vol.6, n°1 (1972). Zbl0248.14010
  4. [Man 2] YU. MANIN, Explicit formulas for the eigenvalues of Hecke operators, Acta Arithmetica, XXIV (1973). Zbl0273.10018
  5. [Man 3] YU. MANIN, Periods of parabolic forms and p-adic Hecke series, Math. USSR Sbornik, vol.21, n°3 (1973). Zbl0293.14008
  6. [Maz] B. MAZUR, Courbes elliptiques et symboles modulaires, Séminaire Bourbaki 24ème année, n°414 (1971/1972). Zbl0276.14012
  7. [Shi] G. SHIMURA, Introduction to the arithmetic theory of automorphic functions, Princeton University Press, 1971. Zbl0221.10029
  8. [Sho] V. SHOKUROV, Modular symbols of arbitrary weight, Functional analysis and its applications, vol.10, n°1 (1976). Zbl0345.14009MR55 #269

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.