Injective models of G -disconnected simplicial sets

Marek Golasiński

Annales de l'institut Fourier (1997)

  • Volume: 47, Issue: 5, page 1491-1522
  • ISSN: 0373-0956

Abstract

top
We generalize the results by G.V. Triantafillou and B. Fine on G -disconnected simplicial sets. An existence of an injective minimal model for a complete 𝕀 -algebra is presented, for any E I -category 𝕀 . We then make use of the E I -category 𝒪 ( G , X ) associated with a G -simplicial set X to apply these results to the category of G -simplicial sets.Finally, we describe the rational homotopy type of a nilpotent G -simplicial set by means of its injective minimal model.

How to cite

top

Golasiński, Marek. "Injective models of $G$-disconnected simplicial sets." Annales de l'institut Fourier 47.5 (1997): 1491-1522. <http://eudml.org/doc/75271>.

@article{Golasiński1997,
abstract = {We generalize the results by G.V. Triantafillou and B. Fine on $G$-disconnected simplicial sets. An existence of an injective minimal model for a complete $\{\Bbb I\}$-algebra is presented, for any $EI$-category $\{\Bbb I\}$. We then make use of the $EI$-category $\{\cal O\}(G,X)$ associated with a $G$-simplicial set $X$ to apply these results to the category of $G$-simplicial sets.Finally, we describe the rational homotopy type of a nilpotent $G$-simplicial set by means of its injective minimal model.},
author = {Golasiński, Marek},
journal = {Annales de l'institut Fourier},
keywords = {differential graded algebra; de Rham algebra; -category; Grothendieck construction; -minimal model; linearly compact (complete); -module; Postnikov tower; simplicial set; injective model; equivariant homotopy theory; simplicial object},
language = {eng},
number = {5},
pages = {1491-1522},
publisher = {Association des Annales de l'Institut Fourier},
title = {Injective models of $G$-disconnected simplicial sets},
url = {http://eudml.org/doc/75271},
volume = {47},
year = {1997},
}

TY - JOUR
AU - Golasiński, Marek
TI - Injective models of $G$-disconnected simplicial sets
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 5
SP - 1491
EP - 1522
AB - We generalize the results by G.V. Triantafillou and B. Fine on $G$-disconnected simplicial sets. An existence of an injective minimal model for a complete ${\Bbb I}$-algebra is presented, for any $EI$-category ${\Bbb I}$. We then make use of the $EI$-category ${\cal O}(G,X)$ associated with a $G$-simplicial set $X$ to apply these results to the category of $G$-simplicial sets.Finally, we describe the rational homotopy type of a nilpotent $G$-simplicial set by means of its injective minimal model.
LA - eng
KW - differential graded algebra; de Rham algebra; -category; Grothendieck construction; -minimal model; linearly compact (complete); -module; Postnikov tower; simplicial set; injective model; equivariant homotopy theory; simplicial object
UR - http://eudml.org/doc/75271
ER -

References

top
  1. [1] A.K. BOUSFIELD and V.K.A.M. GUGENHEIM, On PL de Rham theory and rational homotopy type, Memories Amer. Math. Soc., 179 (1976). Zbl0338.55008MR54 #13906
  2. [2] G.E. BREDON, Equivariant Cohomology Theories, Lecture Notes in Math., Springer-Verlag, 34 (1967). Zbl0162.27202MR35 #4914
  3. [3] A.D. ELMENDORF, System of fixed point sets, Trans. Amer. Math. Soc., 277 (1983), 275-284. Zbl0521.57027MR84f:57029
  4. [4] B.L. FINE, Disconnected equivariant rational homotopy theory and formality of compact G-Kähler manifolds, Ph. D. thesis, Chicago 1992. 
  5. [5] B.L. FINE and G.V. TRIANTAFILLOU, On the equivariant formality of Kähler manifolds with finite group action, Can. J. Math., 45 (1993), 1200-1210. Zbl0805.55009MR94j:55010
  6. [6] M. GOLASIŃSKI, Injectivity of the de Rham algebra on G-disconnected simplicial sets, (submitted). 
  7. [7] M. GOLASIŃSKI, Equivariant Rational Homotopy Theory as a Closed Model Category, J. Pure Appl. Alg., (to appear). Zbl0929.55012
  8. [8] M. GOLASIŃSKI, Componentwise injective models of functors to DGAs, Colloq. Math., 73 (1997), 83-92. Zbl0877.55004MR98b:55012
  9. [9] S. HALPERIN, Lectures on minimal models, Mémories S.M.F., nouvelle série, 9-10 (1983). Zbl0536.55003MR85i:55009
  10. [10] S. LEFSCHETZ, Algebraic topology, Amer. Math. Soc. Colloq. Publ., XXVII (1942). Zbl0061.39302MR4,84f
  11. [11] W. LÜCK, Transformation groups and Algebraic K-Theory, Lect. Notes in Math., Springer-Verlag, 1408 (1989). Zbl0679.57022MR91g:57036
  12. [12] D. SULLIVAN, Infinitesimal Computations in Topology, Publ. Math. I.H.E.S., 47 (1977), 269-331. Zbl0374.57002MR58 #31119
  13. [13] G.V. TRIANTAFILLOU, Equivariant minimal models, Trans. Amer. Math. Soc., 274 (1982), 509-532. Zbl0516.55010MR84g:55017
  14. [14] G.V. TRIANTAFILLOU, Ratinalization of Hopf G-spaces, Math. Z., 182 (1983), 485-500. Zbl0518.55008MR84h:55008
  15. [15] G.V. TRIANTAFILLOU, An algebraic model for G-homotopy types, Astérisque, 113-114 (1984), 312-337. Zbl0564.55009MR85m:55009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.