Central decomposition of Poincaré-invariant nets of local field algebras and absence of spontaneous breaking of the Lorentz group

Wulf Driessler; Stephen J. Summers

Annales de l'I.H.P. Physique théorique (1985)

  • Volume: 43, Issue: 2, page 147-166
  • ISSN: 0246-0211

How to cite

top

Driessler, Wulf, and Summers, Stephen J.. "Central decomposition of Poincaré-invariant nets of local field algebras and absence of spontaneous breaking of the Lorentz group." Annales de l'I.H.P. Physique théorique 43.2 (1985): 147-166. <http://eudml.org/doc/76295>.

@article{Driessler1985,
author = {Driessler, Wulf, Summers, Stephen J.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {reducible Poincaré-invariant representations of nets of local field algebras; structural point of view; central decompositions; spontaneous breaking of the Lorentz symmetry; modular automorphism groups of the wedge algebras},
language = {eng},
number = {2},
pages = {147-166},
publisher = {Gauthier-Villars},
title = {Central decomposition of Poincaré-invariant nets of local field algebras and absence of spontaneous breaking of the Lorentz group},
url = {http://eudml.org/doc/76295},
volume = {43},
year = {1985},
}

TY - JOUR
AU - Driessler, Wulf
AU - Summers, Stephen J.
TI - Central decomposition of Poincaré-invariant nets of local field algebras and absence of spontaneous breaking of the Lorentz group
JO - Annales de l'I.H.P. Physique théorique
PY - 1985
PB - Gauthier-Villars
VL - 43
IS - 2
SP - 147
EP - 166
LA - eng
KW - reducible Poincaré-invariant representations of nets of local field algebras; structural point of view; central decompositions; spontaneous breaking of the Lorentz symmetry; modular automorphism groups of the wedge algebras
UR - http://eudml.org/doc/76295
ER -

References

top
  1. [1] H. Araki, On the algebra of all local observables, Prog. Theor. Phys., t. 32, 1964, p. 844-854. Zbl0125.21904MR182329
  2. [2] S. Doplicher, R. Haag and J.E. Roberts, Fields, observables and gauge transformations, I, Commun. Math. Phys., t. 13, 1969, p. 1-23. Zbl0175.24704MR258394
  3. [3] S.J. Summers, On the phase diagram of a P(φ)2 quantum field model, Ann. Inst. Henri Poincaré, t. A34, 1981, p. 173-229. MR610865
  4. [4] J.Z. Imbrie, Phase diagrams and cluster expansions for low temperature P(φ)2 models, I and II, Commun. Math. Phys., t. 82, 1981, p. 261-304 and p. 305-343. MR639061
  5. [5] T. Balaban and K. Gawedzki, A low temperature expansion for the pseudoscalar Yukawa model of quantum fields in two space-time dimensions, Ann. Inst. Henri Poincaré, t. A36, 1982, p. 271-400. Zbl0509.46059MR667547
  6. [6] J.J. Bisognano and E.H. Wichmann, On the duality condition for a Hermitian scalar field, J. Math. Phys., t. 16, 1975, p. 985-1007. Zbl0316.46062MR438943
  7. [7] J.J. Bisognano and E.H. Wichmann, On the duality condition for quantum fields, J. Math. Phys., t. 17, 1976, p. 303-321. MR438944
  8. [8] W. Driessler and S.J. Summers, Nonexistence of quantum fields associated with two-dimensional spacelike planes, Commun. Math. Phys., t. 89, 1983, p. 221-226. Zbl0522.46048MR709463
  9. [9] E.H. Wichmann, On systems of local operators and the duality condition, J. Math. Phys., t. 24, 1983, p. 1633-1644. Zbl0542.46037MR708687
  10. [10] W. Driessler, S.J. Summers and E.H. Wichmann, On the affiliation of quantum field operators to local algebras of observables, Universität Osnabrück-University of California, Berkeley, preprint, to appear. Zbl0595.46062
  11. [11] H.J. Borchers, On the structure of the algebra of field operators, Nuovo Cim., t. 24, 1962, p. 214-236. Zbl0129.42205MR142320
  12. [12] D. Maison, Eine Bemerkung zu Clustereigenschaften, Commun. Math. Phys., t. 10, 1968, p. 48-51. Zbl0157.32102MR234688
  13. [13] J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien, 2e édition, Gauthier-Villars, Paris, 1969. Zbl0175.43801MR352996
  14. [14] W. Driessler, Comments on lightlike translations and applications in relativistic quantum field theory, Commun. Math. Phys., t. 44, 1975, p. 133-141. Zbl0306.46076MR416336
  15. [15] G.G. Emch, Algebraic methods in statistical mechanics and quantum field theory, John Wiley and Sons, Inc., New York, 1972. Zbl0235.46085
  16. [16] J.E. Roberts, Spontaneously broken gauge symmetries and superselection rules, in Proceedings of the international school of mathematical physics, Univ. of Camerino, 1974, E. Gallavotti (ed.), Univ. of Camerino, 1976. 
  17. [17] J.-P. Jurzak, Decomposable operators: Applications to K. M. S. weights in a decomposable von Neumann algebra, Rep. Math. Phys., t. 8, 1975, p. 203-228. Zbl0319.46053MR442706
  18. [18] M. Takesaki, Theory of operator algebras I, Springer-Verlag, New York, 1979. Zbl0436.46043
  19. [19] R. Longo, Notes on algebraic invariants for non-commutative dynamical systems, Commun. Math. Phys., t. 69, 1979, p. 195-207. Zbl0421.46053MR550019
  20. [20] M. Takesaki, Tomita's theory of modular Hilbert algebras and its applications, Lecture notes in mathematics, 128, Springer-Verlag, Berlin, Heidelberg, New York, 1970. Zbl0193.42502MR270168
  21. [21] F. Combes, Poids et espérances conditionnelles dans les algèbres de von Neumann, Bull. Soc. Math. France, t. 99, 1971, p. 73-112. Zbl0208.38202MR288589
  22. [22] R. Jost, The general theory of quantized fields, American mathematical society, Providence, Rhode Island, 1965. Zbl0127.19105MR177667
  23. [23] R.F. Streater and A.S. Wightman, PCT, Spin and statistics and all that, Benjamin Publishing Co., Reading, Massachusetts, 1964. Zbl0135.44305MR161603
  24. [24] H. Araki, Von Neumann algebras of local observables for free scalar field, J. Math. Phys., t. 5, 1974, p. 1-13. Zbl0151.44401MR160487

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.