Small random perturbations of infinite dimensional dynamical systems and nucleation theory

M. Cassandro; E. Olivieri; P. Picco

Annales de l'I.H.P. Physique théorique (1986)

  • Volume: 44, Issue: 4, page 343-396
  • ISSN: 0246-0211

How to cite

top

Cassandro, M., Olivieri, E., and Picco, P.. "Small random perturbations of infinite dimensional dynamical systems and nucleation theory." Annales de l'I.H.P. Physique théorique 44.4 (1986): 343-396. <http://eudml.org/doc/76324>.

@article{Cassandro1986,
author = {Cassandro, M., Olivieri, E., Picco, P.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {large deviations; dynamical system; stochastic differential equation; thermodynamic limit; transition probability; tunnelling},
language = {eng},
number = {4},
pages = {343-396},
publisher = {Gauthier-Villars},
title = {Small random perturbations of infinite dimensional dynamical systems and nucleation theory},
url = {http://eudml.org/doc/76324},
volume = {44},
year = {1986},
}

TY - JOUR
AU - Cassandro, M.
AU - Olivieri, E.
AU - Picco, P.
TI - Small random perturbations of infinite dimensional dynamical systems and nucleation theory
JO - Annales de l'I.H.P. Physique théorique
PY - 1986
PB - Gauthier-Villars
VL - 44
IS - 4
SP - 343
EP - 396
LA - eng
KW - large deviations; dynamical system; stochastic differential equation; thermodynamic limit; transition probability; tunnelling
UR - http://eudml.org/doc/76324
ER -

References

top
  1. [1] W.G. Faris and G. Jona-Lasinio, Large fluctuations for a non linear heat equation with noise. J. Phys. A : Math. Gen., t. 15, 1982, p. 3025-3055. Zbl0496.60060MR684578
  2. [2] G. Parisi and Y.S. Wu, Scienta Sinica, t. 24, 1981, p. 483-496. MR626795
  3. [3] J.L. Lebowitz and O. Penrose, Toward a rigorous molecular theory of metastability. In Fluctuation Phenomena. Studies in Statistical Mechanics, edited by J. L. Lebowitz and E. W. Montroll. Amsterdam, North Holland, 1979. MR578729
  4. [4] J. Sewel, Stability Equilibrium and Metastability in Statistical Mechanics. Phys. Rep., t. 57, 1980, p. 307. MR556940
  5. [5] M. Cassandro, A. Galves, E. Olivieri and M.E. Vares, Metastability behaviour of Stochastic Dynamics: a pathwise approach. J. Stat. Phys., t. 35, 1984, p. 603-634. Zbl0591.60080MR749840
  6. [6] A. Galves, E. Olivieri and M.E. Vares, Metastability for a class of dynamical systems subject to small random perturbations. Preprint I. H. E. S. Octobre 1984. Zbl0709.60058MR905332
  7. [7] A.D. Wentzel and M.L. Freidlin, On small random perturbations of dynamical systems, Russian Math. Survey, t. 25, 1, 1970, p. 1-55. Some problems concerning stability under small random perturbations. Theory of Probability and Appl., t. 17, 2, 1972, p. 269-283. Zbl0297.34053MR267221
  8. [8] M.L. Freidlin and A.D. Wentzel, Random perturbations of dynamical system. Springer Verlag. New-York, Berlin, Heidelberg, Tokyo, 1984. MR722136
  9. [9] C.L. Thompson, Mathematical statistical mechanics. Princeton University, Press1972. Zbl0244.60082
  10. [10] T.H. Eisele and R.S. Ellis, Symmetry breaking and random waves for magnetic systems on a circle. Wahrscheinlichkeitstheorie Verw. Geb., t. 63, 1983, p 297-348. Zbl0494.60097MR705628
  11. [11] W.S. Loud, Periodic Solution of x'' + cx' + g(x) = ∈f(t). Memoirs of the American Mathematical Society, n° 31, 1959. Zbl0085.30701MR107058
  12. [12] N. Chafee and E. Infante, A bifurcation problem for a non linear parabolic equation. J. Applicable Anal., t. 4, 1974, p. 17-37. Zbl0296.35046MR440205
  13. [13] D. Henry, Geometric theory of Semilinear Parabolic equation. Lecture notes in Math., n° 840, Springer Verlag, Berlin, Heidelbérg, New York, 1981. Zbl0456.35001MR610244
  14. [14] T. Laetsch, Critical solutions of autonomous non linear boundary value problems. Indiana University. Math. Journal, t. 24, n° 7, 1975, p. 651-658. Zbl0314.34065
  15. [15] H. Berestycki, Le nombre de solutions de certains problèmes semi-linéaires elliptiques. J. of Functional Analysis, t. 40, 1981, p. 1-29. Zbl0452.35038MR607588
  16. [16] E.A. Coddington and N. Levinson, Theory of ordinary differential equations. Mc Grawhill, New York, Toronto, London, 1955. Zbl0064.33002MR69338
  17. [17] R. Courant and D. Hilbert, Methods of Methematical Physics. t. 1. Intersciences, New York, 1953. Zbl0051.28802MR65391

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.