Spectral resonances for the Laplace-Beltrami operator

Stephen De Bièvre; Peter D. Hislop

Annales de l'I.H.P. Physique théorique (1988)

  • Volume: 48, Issue: 2, page 105-145
  • ISSN: 0246-0211

How to cite

top

De Bièvre, Stephen, and Hislop, Peter D.. "Spectral resonances for the Laplace-Beltrami operator." Annales de l'I.H.P. Physique théorique 48.2 (1988): 105-145. <http://eudml.org/doc/76392>.

@article{DeBièvre1988,
author = {De Bièvre, Stephen, Hislop, Peter D.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {spectral theory; Laplace-Beltrami operator; Riemannian manifolds; spectral resonances},
language = {eng},
number = {2},
pages = {105-145},
publisher = {Gauthier-Villars},
title = {Spectral resonances for the Laplace-Beltrami operator},
url = {http://eudml.org/doc/76392},
volume = {48},
year = {1988},
}

TY - JOUR
AU - De Bièvre, Stephen
AU - Hislop, Peter D.
TI - Spectral resonances for the Laplace-Beltrami operator
JO - Annales de l'I.H.P. Physique théorique
PY - 1988
PB - Gauthier-Villars
VL - 48
IS - 2
SP - 105
EP - 145
LA - eng
KW - spectral theory; Laplace-Beltrami operator; Riemannian manifolds; spectral resonances
UR - http://eudml.org/doc/76392
ER -

References

top
  1. [1] P.D. Hislop, I.M. Sigal, Shape Resonances in Quantum Mechanics. University of California, Irvine preprint 1986, to be published in Memoirs of the American Mathematical Society. MR921268
  2. [2] J.-M. Combes, P. Duclos, M. Klein, R. Seiler, The Shape Resonance. Commun. Math. Phys., t. 110, 1987, p. 215-216. Zbl0629.47044MR887996
  3. [3] B. Helffer, Sjöstrand, Resonances en Limite Semi-Classique. Mémoire de la Société Mathématique de France, no. 24/25, Supplément au Bulletin de la S. M. F., t. 114, 1986. Zbl0631.35075
  4. [4] S. Graffi, K. Yajima, Exterior scaling and the AC-Stark effect in a Coulomb field. Commun. Math. Phys., t. 89, 1983, p. 277-301. Zbl0522.35085MR709468
  5. [5] I. Herbst, Dilation Analyticity in constant electric field, I. The two-body problem. Commun. Math. Phys., t. 64, 1979, p. 279-298. Zbl0447.47028MR520094
  6. [6] J.E. Avron, I. Herbst, B. Simon, Schrödinger Operators with magnetic fields III. Atoms in homogeneous magnetic fields. Commun. Math. Phys., t. 79, 1981, p. 529-572. Zbl0464.35086MR623966
  7. [7] J.F. Escobar, On the spectrum of the Laplacian on complete Riemannian manifolds. Comm. in Partial Differential Equations, t. 11 (1), 1986, p. 63-85. Zbl0585.58046MR814547
  8. [8] R.G. Froese, P.D. Hislop, Analysis of Point Spectrum of Second Order Elliptic Operators on Non-compact Manifolds. CPTMarseille preprint 1988. 
  9. [9] Ph Briet, J.M. Combes, P. Duclos, On the location of Resonances for Schrödinger Operators in the semiclassical limit. III. Shape Resonances. CPTMarseille preprint, 1987 ; Sigal, I. M.: Exponential Bounds on Resonance States and Width of Resonances. University of Toronto preprint, 1987. Zbl0629.47043
  10. [10] R. Abraham, J.E. Marsden, Foundations of Mechanics. London: Benjamin Cummings Publishing Co., 1978. Zbl0393.70001MR515141
  11. [11] P. Chernoff, Essential Self-Adjointness of powers of generators of hyperbolic equations. J. Functional Analysis, t. 12, 1972, p. 401-414. Zbl0263.35066MR369890
  12. [12] M. Spivak, A Comprehensive Introduction to Differential Geometry. I. Delaware: Publish or Perish, Inc. 1970. 
  13. [13] M. Reed, B. Simon, Methods of Modern Mathematical Physics, II. Fourier Analysis, Self-Adjointness. New York: Academic Press1975. Zbl0308.47002MR493420
  14. [14] M. Reed, B. Simon, Methods of Modern Mathematical Physics, IV. Analysis of Operators. New York: Academic Press, 1978. Zbl0401.47001MR493421
  15. [15] S.T. Yau, Some function theoretic properties of complete Riemannian manifolds and their applications to geometry. Indiana Univ. Math. J., t. 25, 1976, p. 659-670. Zbl0335.53041MR417452
  16. [16] B. Simon, Semiclassical Analysis of Low Lying Eigenvalues I. Nondegenerate Minima: Asymptotic Expansions. Ann. Inst. Henri Poincaré, t. 13, 1983, p. 296-307. Zbl0526.35027MR708966
  17. [17] Ph Briet, J.M. Combes, P. Duclos, On the Location of Resonances for Schrödinger Operators in the semiclassical limit. I : Resonance free domains. J. Math. Analy. and Appl., t. 126, 1987, p. 90-99. Zbl0629.47043MR900530
  18. [18] S. Agmon, Lectures on exponential decay of solutions of second-order elliptic equations. Princeton: Princeton University Press, 1982. Zbl0503.35001MR745286
  19. [19] B. Simon, Semiclassical Analysis of Low Lying Eigenvalues II. Tunneling. Ann. Math., t. 120, 1984, p. 89-118. Zbl0626.35070MR750717
  20. [20] L.P. Horwitz, I.M. Sigal, On a mathematical model for non-stationary physical systems. Helv. Phys. Acta, t. 51, 1978, p. 685-715. MR542800
  21. [21] P. Deift, W. Hunziker, B. Simon, E. Vock, Pointwise Bounds on Eigenfunctions and Wave Packets in N-Body Quantum Systems IV. Commun. Math. Phys., t. 64, 1978, p. 1-34. Zbl0419.35079MR516993
  22. [22] B.S. Dewitt, Dynamical Theory in Curved Spaces I. A Review of the Classical and Quantum Action Principles. Rev. Mod. Phys., t. 29, 1957, p. 377-397. Zbl0118.23301MR95691
  23. [23] K.S. Cheng, Quantization of a General Dynamical System by Feynman's Path Integration Formulation. J. Math. Phys., t. 13, 1972, p. 1723-1726. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.