On the multiplicative ergodic theorem for uniquely ergodic systems
Annales de l'I.H.P. Probabilités et statistiques (1997)
- Volume: 33, Issue: 6, page 797-815
- ISSN: 0246-0203
Access Full Article
topHow to cite
topFurman, Alex. "On the multiplicative ergodic theorem for uniquely ergodic systems." Annales de l'I.H.P. Probabilités et statistiques 33.6 (1997): 797-815. <http://eudml.org/doc/77590>.
@article{Furman1997,
author = {Furman, Alex},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {uniform convergence; multiplicative ergodic theorem; Lyapunov exponents},
language = {eng},
number = {6},
pages = {797-815},
publisher = {Gauthier-Villars},
title = {On the multiplicative ergodic theorem for uniquely ergodic systems},
url = {http://eudml.org/doc/77590},
volume = {33},
year = {1997},
}
TY - JOUR
AU - Furman, Alex
TI - On the multiplicative ergodic theorem for uniquely ergodic systems
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1997
PB - Gauthier-Villars
VL - 33
IS - 6
SP - 797
EP - 815
LA - eng
KW - uniform convergence; multiplicative ergodic theorem; Lyapunov exponents
UR - http://eudml.org/doc/77590
ER -
References
top- [1] J.E. Cohen, H. Kesten and M. Newman (editors), Oseledec's multiplicative ergodic theorem: a proof, Contemporary Mathematics, Vol. 50, 1986, pp. 23-30. Zbl0607.60026
- [2] H. Furstenberg and H. Kesten, Products of random matrices, Ann. Math. Stat., Vol. 31, 1960, pp. 457-489. Zbl0137.35501MR121828
- [3] E. Glasner and B. Weiss, On the construction of minimal skew-products, Israel J. Math., Vol. 34, 1979, pp. 321-336. Zbl0434.54032MR570889
- [4] M.R. Herman, Construction d'un difféomorphisme minimal d'entropie topologique non nulle, Ergod. Th. and Dyn. Sys., Vol. 1, No. 1, 1981, pp. 65-76. Zbl0469.58008MR627787
- [5] Y. Katznelson and B. Weiss, A simple proof of some ergodic theorems, Israel J. Math., Vol. 42, No. 4, 1982, pp. 291-296. Zbl0546.28013MR682312
- [6] J.F.C. Kingman, The ergodic theory of subadditive stochastic processes, J. Royal Stat. Soc., Vol. B30, 1968, pp. 499-510. Zbl0182.22802MR254907
- [7] O. Knill, The upper Lyapunov exponent of SL2(R) cocycles: discontinuity and the problem of positivity, in Lecture Notes in Math., Vol. 1186, Lyapunov exponents, Berlin-Heidelberg-New York, pp. 86-97. Zbl0746.58050MR1178949
- [8] O. Knill, Positive Lyapunov exponents for a dense set of bounded measurable SL2 (R)- cocycles, Ergod. Th. and Dyn. Syst., Vol. 12, No.2, 1992, pp. 319-331. Zbl0759.58025MR1176626
- [9] M.G. Nerurkar, Typical SL2 (R) valued cocycles arising from strongly accessible linear differential systems have non-zero Lyapunov exponents, preprint.
- [10] V.I. Oseledec, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc., Vol. 19, 1968, pp. 197-231. Zbl0236.93034MR240280
- [11] P. Walters, Unique ergodicity and matrix products, in Lecture Notes in Math., Vol 1186, Lyapunov exponents, Berlin-Heidelberg-New York, pp. 37-56. Zbl0604.60011
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.