Coupled map lattices with asynchronous updatings

Torsten Fischer

Annales de l'I.H.P. Probabilités et statistiques (2001)

  • Volume: 37, Issue: 4, page 421-479
  • ISSN: 0246-0203

How to cite

top

Fischer, Torsten. "Coupled map lattices with asynchronous updatings." Annales de l'I.H.P. Probabilités et statistiques 37.4 (2001): 421-479. <http://eudml.org/doc/77695>.

@article{Fischer2001,
author = {Fischer, Torsten},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {coupled map lattices; Poisson updatings at the individual sites; Markov kernel},
language = {eng},
number = {4},
pages = {421-479},
publisher = {Elsevier},
title = {Coupled map lattices with asynchronous updatings},
url = {http://eudml.org/doc/77695},
volume = {37},
year = {2001},
}

TY - JOUR
AU - Fischer, Torsten
TI - Coupled map lattices with asynchronous updatings
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2001
PB - Elsevier
VL - 37
IS - 4
SP - 421
EP - 479
LA - eng
KW - coupled map lattices; Poisson updatings at the individual sites; Markov kernel
UR - http://eudml.org/doc/77695
ER -

References

top
  1. [1] L Arnold, Random Dynamical Systems, Springer, 1998. Zbl0906.34001MR1374107
  2. [2] V Baladi, M Degli Esposti, S Isola, E Järvenpää, A Kupiainen, The spectrum of weakly coupled map lattices, J. Math. Pures et Appl.77 (1998) 539-584. Zbl1023.37009MR1628169
  3. [3] H Bauer, Wahrscheinlichkeitstheorie, de Gruyter, 1991. Zbl0714.60001MR1150240
  4. [4] J Bricmont, A Kupiainen, Coupled analytic maps, Nonlinearity8 (1995) 379-396. Zbl0836.58027MR1331818
  5. [5] J Bricmont, A Kupiainen, High temperature expansions and dynamical systems, Comm. Math. Phys.178 (1996) 703-732. Zbl0859.58037MR1395211
  6. [6] J Bricmont, A Kupiainen, Infinite dimensional SRB-measures. Lattice dynamics (Paris, 1995), Physica D103 (1997) 1-4, 18–33. Zbl1194.82061MR1464238
  7. [7] L.A Bunimovich, Coupled map lattices: One step forward and two steps back, Physica D86 (1995) 248-255. Zbl0890.58029MR1353959
  8. [8] L.A Bunimovich, Y.G Sinai, Space-time chaos in coupled map lattices, Nonlinearity1 (1988) 491-516. Zbl0679.58028MR967468
  9. [9] R.L Dobrushin, Markov processes with a large number of locally interacting components: existence of a limit process and its ergodicity, Problems Inform. Transmission7 (1971) 149-164. MR310999
  10. [10] R.L Dobrushin, Markov processes with many locally interacting components – the reversible case and some generalizations, Problems Inform. Transmission7 (1971) 235-241. 
  11. [11] Dobrushin R.L, Sinai Ya.G (Eds.), Multicomponent Random Systems, Advances in Probability and Related Topics, 6, 1980, (originally published in Russian). Zbl0425.00018MR599530
  12. [12] T Fischer, Transfer operators for deterministic and stochastic coupled map lattices, Thesis, University of Warwick, 1998. 
  13. [13] T Fischer, H.H Rugh, Transfer operators for coupled analytic maps, Ergodic Theory Dynamical Systems20 (2000) 109-143. Zbl0984.37025MR1747027
  14. [14] R.J Glauber, Time-dependent statistics of the Ising model, J. Math. Phys.4 (1963) 294-307. Zbl0145.24003MR148410
  15. [15] T.E Harris, Nearest-neighbor Markov interaction processes on multidimensional lattices, Adv. Math.9 (1972) 66-89. Zbl0267.60107MR307392
  16. [16] R Holley, A class of interactions in an infinite particle system, Adv. Math.5 (1970) 291-309. Zbl0219.60054MR268960
  17. [17] M Jiang, Equilibrium states for lattice models of hyperbolic type, Nonlinearity8 (5) (1994) 631-659. Zbl0836.58032MR1355036
  18. [18] M Jiang, Ergodic properties of coupled map lattices of hyperbolic type, Penns. State University Dissertation, 1995. 
  19. [19] M Jiang, A Mazel, uniqueness of Gibbs states and exponential decay of correlation for some lattice models, J. Statist. Phys.82 (3–4) (1995). MR1372428
  20. [20] M Jiang, Ya.B Pesin, Equilibrium measures for coupled map lattices: existence, uniqueness and finite-dimensional approximations, CMP193 (1998) 675-711. Zbl0944.37005MR1624859
  21. [21] G Keller, M Künzle, Transfer operators for coupled map lattices, Ergodic Theory Dynamical Systems12 (1992) 297-318. Zbl0737.58032MR1176625
  22. [22] S Lang, Real and Functional Analysis, Springer, 1993. Zbl0831.46001MR1216137
  23. [23] T.M Liggett, Existence theorems for infinite particle systems, Trans. Amer. Math. Soc.165 (1972) 471-481. Zbl0239.60072MR309218
  24. [24] T.M Liggett, Interacting Particle Systems, Grundlehren der mathematischen Wissenschaften, 276, Springer, 1985. Zbl0559.60078MR776231
  25. [25] C Maes, A Van Moffaert, Stochastic stability of weakly coupled lattice maps, Nonlinearity10 (1997) 715-730. Zbl0962.82010MR1448583
  26. [26] Ya.B Pesin, Ya.G Sinai, Space-time chaos in chains of weakly interacting hyperbolic mappings, Adv. Soviet Math.3 (1991) 165-198. Zbl0850.70250MR1118162
  27. [27] F Spitzer, Random processes defined through the interaction of an infinite particle system, in: Springer Lecture Notes in Mathematics, 89, Springer, 1969, pp. 201-223. Zbl0181.43601MR268964
  28. [28] F Spitzer, Interaction of Markov processes, Adv. Math.5 (1970) 246-290. Zbl0312.60060MR268959
  29. [29] D.L Volevich, The Sinai–Bowen–Ruelle measure for a multidimensional lattice of interacting hyperbolic mappings, Russ. Akad. Dokl. Math.47 (1993) 117-121. Zbl0823.58025MR1218960
  30. [30] D.L Volevich, Construction of an analogue of Bowen–Ruell–Sinai measure for a multidimensional lattice of interacting hyperbolic mappings, Russ. Akad. Math. Sbornik79 (1994) 347-363. Zbl0821.58027MR1239757

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.