Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems
C. Landim; G. Panizo; H. T. Yau
Annales de l'I.H.P. Probabilités et statistiques (2002)
- Volume: 38, Issue: 5, page 739-777
- ISSN: 0246-0203
Access Full Article
topHow to cite
topLandim, C., Panizo, G., and Yau, H. T.. "Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems." Annales de l'I.H.P. Probabilités et statistiques 38.5 (2002): 739-777. <http://eudml.org/doc/77731>.
@article{Landim2002,
author = {Landim, C., Panizo, G., Yau, H. T.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {diffusion process; Dirichlet form; spectral gap of generator; logarithmic Sobolev inequalities; spin system; Glauber dynamics; local central limit theorem; large deviations},
language = {eng},
number = {5},
pages = {739-777},
publisher = {Elsevier},
title = {Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems},
url = {http://eudml.org/doc/77731},
volume = {38},
year = {2002},
}
TY - JOUR
AU - Landim, C.
AU - Panizo, G.
AU - Yau, H. T.
TI - Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 5
SP - 739
EP - 777
LA - eng
KW - diffusion process; Dirichlet form; spectral gap of generator; logarithmic Sobolev inequalities; spin system; Glauber dynamics; local central limit theorem; large deviations
UR - http://eudml.org/doc/77731
ER -
References
top- [1] L. Bertini, B. Zegarlinski, Coercive inequalities for Kawasaki dynamics: The product case, Markov Proc. Related Fields5 (1999) 125-162. Zbl0934.60096MR1762171
- [2] L. Bertini, B. Zegarlinski, Coercive inequalities for Gibbs measures, J. Funct. Anal.162 (1999) 257-289. Zbl0932.60061MR1682059
- [3] P. Caputo, A remark on spectral gap and logarithmic Sobolev inequalities for conservative spin systems, Preprint, 2001.
- [4] N. Cancrini, F. Martinelli, Comparison of finite volume canonical and grand canonical Gibbs measures under a mixing condition, Markov Proc. Related Fields6 (2000) 23-72. Zbl1005.82017MR1758982
- [5] N. Cancrini, F. Martinelli, On the spectral gap of Kawasaki dynamics under a mixing condition revisited, J. Math. Phys.41 (2000) 1391-1423. Zbl0977.82031MR1757965
- [6] E.B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, 1989. Zbl0699.35006MR990239
- [7] J.D. Deuschel, D.W. Stroock, Large Deviations, Academic Press, Boston, 1989. Zbl0705.60029MR997938
- [8] P.A. Ferrari, A. Galves, C. Landim, Rate of convergence to equilibrium of symmetric simple exclusion processes, Markov Proc. Related Fields6 (2000) 73-88. Zbl0999.60088MR1758983
- [9] E. Janvresse, C. Landim, J. Quastel, H.T. Yau, Relaxation to equilibrium of conservative dynamics I: zero range processes, Ann. Probab.27 (1999) 325-360. Zbl0951.60095MR1681098
- [10] C. Kipnis, C. Landim, Scaling Limit of Interacting Particle Systems, Grundlehren der mathematischen Wissenschaften, 320, Springer-Verlag, Berlin, 1999. Zbl0927.60002MR1707314
- [11] C. Landim, Decay to equilibrium in L∞ of finite interacting particle systems in infinite volume, Markov Proc. Related Fields4 (1998) 517-534. Zbl0928.60093
- [12] C. Landim, S. Sethuraman, S.R.S. Varadhan, Spectral gap for zero-range dynamics, Ann. Probab.24 (1996) 1871-1902. Zbl0870.60095MR1415232
- [13] M. Ledoux, Logarithmic Sobolev inequalities for unbounded spin systems revisited, Preprint, 2000. Zbl0979.60096
- [14] S.L. Lu, H.T. Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys.156 (1993) 433-499. Zbl0779.60078MR1233852
- [15] H.T. Yau, Logarithmic Sobolev inequality for generalized exclusion processes, Probab. Theory Related Fields (1997). Zbl0903.60087MR1483598
- [16] H.T. Yau, Logarithmic Sobolev inequality for lattice gases with mixing conditions, Comm. Math. Phys.181 (1996) 367-408. Zbl0864.60079MR1414837
Citations in EuDML Documents
top- Eric A. Carlen, Dario Cordero-Erausquin, Elliott H. Lieb, Asymmetric covariance estimates of Brascamp–Lieb type and related inequalities for log-concave measures
- Natalie Grunewald, Felix Otto, Cédric Villani, Maria G. Westdickenberg, A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.