The empirical distribution of the eigenvalues of a Gram matrix with a given variance profile

W. Hachem; P. Loubaton; J. Najim

Annales de l'I.H.P. Probabilités et statistiques (2006)

  • Volume: 42, Issue: 6, page 649-670
  • ISSN: 0246-0203

How to cite

top

Hachem, W., Loubaton, P., and Najim, J.. "The empirical distribution of the eigenvalues of a Gram matrix with a given variance profile." Annales de l'I.H.P. Probabilités et statistiques 42.6 (2006): 649-670. <http://eudml.org/doc/77913>.

@article{Hachem2006,
author = {Hachem, W., Loubaton, P., Najim, J.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random matrix; Stieltjes transform; convergence},
language = {eng},
number = {6},
pages = {649-670},
publisher = {Elsevier},
title = {The empirical distribution of the eigenvalues of a Gram matrix with a given variance profile},
url = {http://eudml.org/doc/77913},
volume = {42},
year = {2006},
}

TY - JOUR
AU - Hachem, W.
AU - Loubaton, P.
AU - Najim, J.
TI - The empirical distribution of the eigenvalues of a Gram matrix with a given variance profile
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 6
SP - 649
EP - 670
LA - eng
KW - random matrix; Stieltjes transform; convergence
UR - http://eudml.org/doc/77913
ER -

References

top
  1. [1] Z.D. Bai, Methodologies in spectral analysis of large-dimensional random matrices, a review, Statist. Sinica9 (3) (1999) 611-677. Zbl0949.60077MR1711663
  2. [2] Z.D. Bai, J.W. Silverstein, No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices, Ann. Probab.26 (1) (1998) 316-345. Zbl0937.60017MR1617051
  3. [3] A. Boutet de Monvel, A. Khorunzhy, V. Vasilchuk, Limiting eigenvalue distribution of random matrices with correlated entries, Markov Process. Related Fields2 (4) (1996) 607-636. Zbl0884.15018MR1431189
  4. [4] C.N. Chuah, J.M. Kahn, D.N.C. Tse, R.A. Valenzuela, Capacity scaling in mimo wireless systems under correlated fading, IEEE Trans. Inform. Theory48 (3) (2002) 637-650. Zbl1071.94500MR1889973
  5. [5] M. Debbah, W. Hachem, P. Loubaton, M. de Courville, MMSE analysis of certain large isometric random precoded systems, IEEE Trans. Inform. Theory49 (5) (2003) 1293-1311. Zbl1063.94055MR1984828
  6. [6] R.B. Dozier, J.W. Silverstein, On the empirical distribution of eigenvalues of large dimensional information-plus-noise type matrices. Preprint, 2004. Zbl1115.60035MR2322123
  7. [7] V.L. Girko, Theory of Random Determinants, Math. Appl. (Soviet Ser.), vol. 45, Kluwer Academic Publishers Group, Dordrecht, 1990. Zbl0704.60003MR1080966
  8. [8] V.L. Girko, Theory of stochastic canonical equations. Vol. I, Math. Appl., vol. 535, Kluwer Academic Publishers, Dordrecht, 2001. Zbl0996.60002MR1887675
  9. [9] A. Goldsmith, S.A. Jafar, N. Jindal, S. Vishwanath, Capacity limits of mimo channels, IEEE J. Sel. Areas in Comm.21 (5) (2003). Zbl1043.94006
  10. [10] W. Hachem, P. Loubaton, J. Najim, Deterministic equivalents for certain functionals of large random matrices, Available at http://arxiv.org/, math.PR/0507172. Zbl1181.15043MR2326235
  11. [11] W. Hachem, P. Loubaton, J. Najim, The empirical eigenvalue distribution of a Gram Matrix: From independence to stationarity, Markov Process. Related Fields11 (4) (2005) 629-648. Zbl1101.15016MR2191967
  12. [12] T. Kailath, A.H. Sayed, B. Hassibi, Linear Estimation, Prentice-Hall, Englewood Cliffs, NJ, 2000. Zbl0980.93077
  13. [13] A. Khorunzhy, B. Khoruzhenko, L. Pastur, Asymptotic properties of large random matrices with independent entries, J. Math. Phys.37 (10) (1996) 5033-5060. Zbl0866.15014MR1411619
  14. [14] L. Li, A.M. Tulino, S. Verdu, Design of reduced-rank mmse multiuser detectors using random matrix methods, IEEE Trans. Inform. Theory50 (6) (2004) 986-1008. Zbl1303.94017MR2094863
  15. [15] V.A. Marčenko, L.A. Pastur, Distribution of eigenvalues in certain sets of random matrices, Mat. Sb. (N.S.)72 (114) (1967) 507-536. Zbl0152.16101MR208649
  16. [16] D. Shlyakhtenko, Random Gaussian band matrices and freeness with amalgamation, Int. Math. Res. Notices20 (1996) 1013-1025. Zbl0872.15018MR1422374
  17. [17] J.W. Silverstein, Strong convergence of the empirical distribution of eigenvalues of large-dimensional random matrices, J. Multivariate Anal.55 (2) (1995) 331-339. Zbl0851.62015MR1370408
  18. [18] J.W. Silverstein, Z.D. Bai, On the empirical distribution of eigenvalues of a class of large-dimensional random matrices, J. Multivariate Anal.54 (2) (1995) 175-192. Zbl0833.60038MR1345534
  19. [19] J.W. Silverstein, P.L. Combettes, Signal detection via spectral theory of large dimensional random matrices, IEEE Trans. Signal Process.40 (8) (1992) 2100-2105. 
  20. [20] D. Tse, S. Hanly, Linear multiuser receivers: effective interference, effective bandwidth and user capacity, IEEE Trans. Inform. Theory45 (2) (1999) 641-657. Zbl0946.94003MR1677023
  21. [21] D. Tse, O. Zeitouni, Linear multiuser receivers in random environments, IEEE Trans. Inform. Theory46 (1) (2000) 171-188. Zbl1051.62528
  22. [22] A. Tulino, S. Verdu, Random Matrix Theory and Wireless Communications, Fondations and Trends in Communications and Information Theory, vol. 1, Now Publishers, Delft, 2004. Zbl1133.94014
  23. [23] Y.Q. Yin, Limiting spectral distribution for a class of random matrices, J. Multivariate Anal.20 (1) (1986) 50-68. Zbl0614.62060MR862241

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.