Aging for interacting diffusion processes

Amir Dembo; Jean-Dominique Deuschel

Annales de l'I.H.P. Probabilités et statistiques (2007)

  • Volume: 43, Issue: 4, page 461-480
  • ISSN: 0246-0203

How to cite

top

Dembo, Amir, and Deuschel, Jean-Dominique. "Aging for interacting diffusion processes." Annales de l'I.H.P. Probabilités et statistiques 43.4 (2007): 461-480. <http://eudml.org/doc/77943>.

@article{Dembo2007,
author = {Dembo, Amir, Deuschel, Jean-Dominique},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {interacting diffusion processes; aging; Ginzburg-Landau model; random walk representation},
language = {eng},
number = {4},
pages = {461-480},
publisher = {Elsevier},
title = {Aging for interacting diffusion processes},
url = {http://eudml.org/doc/77943},
volume = {43},
year = {2007},
}

TY - JOUR
AU - Dembo, Amir
AU - Deuschel, Jean-Dominique
TI - Aging for interacting diffusion processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 4
SP - 461
EP - 480
LA - eng
KW - interacting diffusion processes; aging; Ginzburg-Landau model; random walk representation
UR - http://eudml.org/doc/77943
ER -

References

top
  1. [1] G. Ben Arous, Aging and spin-glass dynamics, in: Proceedings of the International Congress of Mathematicians, vol. III, Higher Ed. Press, Beijing, 2002, pp. 3-14. Zbl1009.82017MR1957514
  2. [2] J.P. Bouchaud, L.F. Cugliandolo, J. Kurchan, M. Mezard, Out of equilibrium dynamics in spin-glasses and other glassy systems, in: Young A.P. (Ed.), Spin Glass Dynamics and Random Fields, World Scientific, 1997. 
  3. [3] R. Carmona, S.S. Molchanov, Parabolic Anderson problems and intermittency, Mem. Amer. Math. Soc.108 (1994). Zbl0925.35074MR1185878
  4. [4] L.F. Cugliandolo, Dynamics of glassy systems, in: Lecture Notes in Slow Relaxation and Non Equilibrium Dynamics in Condensed Matter, Les Houches, 2002, Session 77. 
  5. [5] L.F. Cugliandolo, J. Kurchan, G. Parisi, Off equilibrium dynamics and aging in unfrustrated systems, J. Phys. I (France)4 (1994) 1691. 
  6. [6] T. Delmotte, Parabolic Harnack inequality and estimates of Markov chains on graphs, Rev. Mat. Iberoamericana15 (1) (1999) 181-232. Zbl0922.60060MR1681641
  7. [7] J.-D. Deuschel, Algebraic L 2 -decay of attractive critical processes on the lattice, Ann. Probab.22 (1994) 264-283. Zbl0811.60089MR1258877
  8. [8] J.-D. Deuschel, The random walk representation for interacting diffusion processes, in: Deuschel J.-D., Greven A. (Eds.), Interacting Stochastic Systems, Springer, Berlin, 2005, pp. 378-391. Zbl1111.82049MR2118583
  9. [9] T. Delmotte, J.-D. Deuschel, On estimating the derivatives of symmetric diffusions in stationary environment with applications to ∇φ interface models, Probab. Theory Related Fields133 (2005) 358-390. Zbl1083.60082
  10. [10] J.-D. Deuschel, T. Nishikawa, The dynamic of entropic repulsion, Stochastic Process. Appl. (2006), in press. Zbl1112.60077MR2320950
  11. [11] J.-D. Deuschel, L. Zambotti, Bismut–Elworthy's formula and random walk representation for SDEs with reflection, Stochastic Process. Appl.115 (2005) 907-925. Zbl1071.60044
  12. [12] J.D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, 1980. 
  13. [13] J. Fröhlich, C.-E. Pfister, On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems, Comm. Math. Phys.81 (1981) 277-298. MR632763
  14. [14] T. Funaki, Stochastic interface models, in: Ecole d'été de probabilités de Saint Flour XXXIII – 2003, Lecture Notes in Mathematics, vol. 1869, Springer-Verlag, Berlin, 2005, pp. 105-274. Zbl1119.60081
  15. [15] T. Funaki, H. Spohn, Motion by mean curvature from the Ginzburg–Landau ∇φ interface models, Comm. Math. Phys.185 (1997) 1-36. Zbl0884.58098
  16. [16] G. Giacomin, S. Olla, H. Spohn, Equilibrium fluctuations for ∇φ interface model, Ann. Probab.29 (2001) 1138-1172. Zbl1017.60100
  17. [17] A. Greven, Renormalization and universality for multiple population models, in: Deuschel J.-D., Greven A. (Eds.), Interacting Stochastic Systems, Springer, Berlin, 2005, pp. 209-267. Zbl1078.92065MR2118576
  18. [18] B. Helffer, J. Sjöstrand, On the correlation for Kac-like models in the convex case, J. Stat. Phys.74 (1/2) (1994) 349-409. Zbl0946.35508MR1257821
  19. [19] M. Mezard, G. Parisi, M. Virasoro, Spin Glass Theory and Beyond, World Scientific Lecture Notes in Physics, 1987. Zbl0992.82500MR1026102
  20. [20] C.M. Newman, A general central limit theorem for FKG systems, Comm. Math. Phys.91 (1983) 75-80. Zbl0528.60024MR719811
  21. [21] T. Nishikawa, Hydrodynamic limit for the Ginsburg–Landau ∇φ interface model with a conservation law, J. Math. Sci. Univ. Tokyo9 (2002) 481-519. Zbl1012.60089
  22. [22] L.C.E. Struick, Physical Aging in Amorphous Polymers and other Materials, Elsevier, London, 1976. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.