Multiplicité des trajectoires fermées de systèmes hamiltoniens connexes

I. Ekeland; L. Lassoued

Annales de l'I.H.P. Analyse non linéaire (1987)

  • Volume: 4, Issue: 4, page 307-335
  • ISSN: 0294-1449

How to cite

top

Ekeland, I., and Lassoued, L.. "Multiplicité des trajectoires fermées de systèmes hamiltoniens connexes." Annales de l'I.H.P. Analyse non linéaire 4.4 (1987): 307-335. <http://eudml.org/doc/78134>.

@article{Ekeland1987,
author = {Ekeland, I., Lassoued, L.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {closed trajectories; strictly positive Gaussian curvature},
language = {fre},
number = {4},
pages = {307-335},
publisher = {Gauthier-Villars},
title = {Multiplicité des trajectoires fermées de systèmes hamiltoniens connexes},
url = {http://eudml.org/doc/78134},
volume = {4},
year = {1987},
}

TY - JOUR
AU - Ekeland, I.
AU - Lassoued, L.
TI - Multiplicité des trajectoires fermées de systèmes hamiltoniens connexes
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1987
PB - Gauthier-Villars
VL - 4
IS - 4
SP - 307
EP - 335
LA - fre
KW - closed trajectories; strictly positive Gaussian curvature
UR - http://eudml.org/doc/78134
ER -

References

top
  1. [1] H. Seifert, Periodiche Bewegungen mekanischer Systemen, Math. Zeit., vol. 51, 1948, p. 197-216. Zbl0030.22103MR25693
  2. [2] A. Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. of Math., vol. 108, 1078, p. 507-518. Zbl0403.58001MR512430
  3. [3] F. Clarke, Periodic solutions to Hamiltonian inclusions, J. Diff. Equ., vol. 40, 1981, p. 1-6. Zbl0461.34030MR614215
  4. [4] P.H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure. Appl. Math., vol. 31, 1978, p. 36-68. Zbl0358.70014MR467823
  5. [5] I. Ekeland, Une théorie de Morse pour les systèmes hamiltoniens convexes, Annales I.H.P., Analyse non linéaire, vol. 1, 1984, p. 19-78. Zbl0537.58018MR738494
  6. [6] A. Weinstein, Normal modes for non linear Hamiltonian systems, Inv. Math., vol. 20, 1973, p. 47-57. Zbl0264.70020MR328222
  7. [7] I. Ekeland et J.M. Lasry, On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. Math., vol. 12, 1980, p. 283-319. Zbl0449.70014MR592293
  8. [8] H. Berestycki, J.M. Lasry, B. Ruf et G. Mancini, Existence of multiple periodic orbits on star-shaped Hamiltonians surfaces, Comm. Pure. Appl. Math., vol. 38, 1985, p. 252-290. Zbl0569.58027MR784474
  9. [9] I. Ekeland, An index theory for periodic solutions of convex Hamiltonian systems, Nonlinear functional analysis and its applications, F. Browder ed., Proceedings of Symposia in Pure Math., 45, 1986, p. 395-423. Zbl0596.34023MR843575
  10. [10] V. Yakubovich et V. Starzhinsky, Linear Differential Equations with Periodic Coefficients, Halsdedt Press, Wiley, 1980. 
  11. [11] C. Viterbo, Indice des points critiques obtenus par minimaux (à paraître). Zbl0695.58007
  12. [12] I. Ekeland et L. Lassoued, Un flot hamiltonien a au moins deux trajectoires fermées sur toute surface d'énergie convexe et bornée, C.R. Acad. Sc., t. 301, série I, 1985, p. 162-164 Zbl0588.58013MR801952
  13. [13] P.H. Rabinowitz, Periodic solutions of a Hamiltonian system on a prescribed energy surface, J. Diff. Eq., vol. 33, 1979, p. 336-352. Zbl0424.34043MR543703
  14. [14] Glück-Ziller, Exixtence of periodic motions of conservative systems, Seminar on minimal submanifolds, Princeton University Press, 1983. Zbl0546.58040MR795229
  15. [15] Hayashi, Periodic solutions of classical Hamiltonian systems, TokyoJ. Math., vol. 6, 1983. Zbl0498.58010MR732099
  16. [16] V. Benci, Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems, Ann. Inst. H. Poincaré, Analyse non linéaire, 1, 1984, p. 401-411. Zbl0588.35007MR779876
  17. [17] A. Szulkin, Communication personnelle, décembre 1985. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.