On the singular limit in a phase field model of phase transitions

Nicholas D. Alikakos; Peter W. Bates

Annales de l'I.H.P. Analyse non linéaire (1988)

  • Volume: 5, Issue: 2, page 141-178
  • ISSN: 0294-1449

How to cite

top

Alikakos, Nicholas D., and Bates, Peter W.. "On the singular limit in a phase field model of phase transitions." Annales de l'I.H.P. Analyse non linéaire 5.2 (1988): 141-178. <http://eudml.org/doc/78148>.

@article{Alikakos1988,
author = {Alikakos, Nicholas D., Bates, Peter W.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {singular perturbation; phase transition; stable solutions},
language = {eng},
number = {2},
pages = {141-178},
publisher = {Gauthier-Villars},
title = {On the singular limit in a phase field model of phase transitions},
url = {http://eudml.org/doc/78148},
volume = {5},
year = {1988},
}

TY - JOUR
AU - Alikakos, Nicholas D.
AU - Bates, Peter W.
TI - On the singular limit in a phase field model of phase transitions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1988
PB - Gauthier-Villars
VL - 5
IS - 2
SP - 141
EP - 178
LA - eng
KW - singular perturbation; phase transition; stable solutions
UR - http://eudml.org/doc/78148
ER -

References

top
  1. [Am] H. Amann, Dual Semigroups and Second Order Linear Elliptic Boundary Value Problems, Israel J. Math., Vol. 45, 1983, pp. 225-254. Zbl0535.35017MR719122
  2. [AS] N.D. Alikakos and K.C. Shaing, On the Singular Limit for a Class of Problems Modelling Phase Transitions, S.I.A.M. J. Math. Analysis, Vol. 18, No 5, Sept. 1987, pp. 1453-1462. Zbl0649.34055MR902344
  3. [ASi] N.D. Alikakos and H. Simpson, A Variational Approach for a Class of Singular Perturbation Problems and Applications, Proc. Royal Soc. Edinburgh, 107 A, 1987, pp. 27-42. Zbl0651.49011MR918891
  4. [C] G. Caginalp, An Analysis of a Phase Field Model of a Free Boundary, Archive for Rational Mechanics and Analysis, Arch. Rat. Mech. Anal., 92, 1986, pp. 205-245. Zbl0608.35080MR816623
  5. [CF] G. Caginalp and P. Fife, Elliptic Problems Involving Phase Boundaries Satisfying a Curvature Condition, preprint. Zbl0645.35101MR983727
  6. [CM] G. Caginalp and J.B. Mcleod, The Interior Transition Layer for an Ordinary Differential Equation Arising from Solidification Theory, Quarterly of Applied Math (to appear). Zbl0605.34022
  7. [FH] G. Fusco and J. Hale, Stable Equilibria in a Scalar Parabolic Equation with Variable Diffusion, S.I.A.M. J. Math. Anal., Vol. 16, 1985, pp. 1152-1164. Zbl0597.35040MR807902
  8. [MN] J.J. Mahony and J. Norbury, Asymptotic Location of Nodal lines Using Geodesic Theory, J. Australian Math. Soc., Vol. A, January 1986. Zbl0597.35047
  9. [M1] L., Modica, Gradient Theory of Phase Transitions and Minimal Interface Criterion, Arch. Rat. Mech. Anal., 98, 1987, pp. 123-142. Zbl0616.76004MR866718
  10. [M2] L. Modica, Gradient Theory of Phase Transitions with Boundary Contact Energy (to appear). Zbl0642.49009
  11. [MM] L. Modica and S. Mortola, The Γ-Convergence of Some Functionals, Istituto Matematico "Leonida Tonelli", Univ. Pisa Preprint 77-7, 1977. MR473971
  12. [N] I.P. Natanson, Theory of Functions of a Real Vairable, F. Ungar Publishing Co., New York, 1955. Zbl0064.29102MR67952
  13. [S] P. Sternberg, The Effect of a Singular Perturbation on Nonconvex Variational Problems, Ph. D. dissertation, N.Y.U., June 1986. Zbl0647.49021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.