High order inverse function theorems
Annales de l'I.H.P. Analyse non linéaire (1989)
- Volume: S6, page 283-303
- ISSN: 0294-1449
Access Full Article
topHow to cite
topFrankowska, H.. "High order inverse function theorems." Annales de l'I.H.P. Analyse non linéaire S6 (1989): 283-303. <http://eudml.org/doc/78199>.
@article{Frankowska1989,
author = {Frankowska, H.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {reachable set; stability; inverse mapping theorems; complete metric space},
language = {eng},
pages = {283-303},
publisher = {Gauthier-Villars},
title = {High order inverse function theorems},
url = {http://eudml.org/doc/78199},
volume = {S6},
year = {1989},
}
TY - JOUR
AU - Frankowska, H.
TI - High order inverse function theorems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - S6
SP - 283
EP - 303
LA - eng
KW - reachable set; stability; inverse mapping theorems; complete metric space
UR - http://eudml.org/doc/78199
ER -
References
top- [1] Aubin J.-P. (1982) Comportement lipschitzien des solutions de problèmes de minimisation convexes. CRAS, Paris, 295, 235-238 Zbl0503.49022MR681586
- [2] Aubin J.-P. (1984) Lipschitz behavior of solutions to convex minimization problems. Math. Operations Research, 8, 87-111 Zbl0539.90085MR736641
- [3] Aubin J.-P. & Cellina A. (1984) DIFFERENTIAL INCLUSIONS. Springer Verlag Zbl0538.34007
- [4] Aubin J.-P. & Ekeland I. (1984) APPLIED NONLINEAR ANALYSIS. Wiley-Interscience Zbl0641.47066
- [5] Aubin J.-P. & Frankowska H. (1987) On the inverse function theorem. J. Math. Pures & Appliquées, 66, 71-89 Zbl0643.46033
- [6] Ambrosetti A. & Prodi G. (1973) On the inversion of some differential mappings with singularities between Banach spaces. Ann. Math. Pure Appl., 93, 231-247 Zbl0288.35020
- [7] Beauzamy P. (1985) INTRODUCTION TO BANACH SPACES AND THEIR GEOMETRY. North Holland, Math. Study, 68 Zbl0585.46009MR889253
- [8] Clarke F.H. (1983) OPTIMIZATION AND NONSMOOTH ANALYSIS. Wiley-Interscience Zbl0582.49001MR709590
- [9] Dmitruk A.V., Milyutin A.A. & Osmolovskii N.P. (1980) Ljusternik's theorem and the theory of extrema. Uspekhi Mat. Nauk, 35:6, 11-46 / Russian Math Surveys, 35:6, 11-51 Zbl0479.49015
- [10] Ekeland I. (1979) Nonconvex minimization problems. Bull. Am. Math. Soc., 1, 443-474 Zbl0441.49011MR526967
- [11] Fattorini H. (1987) A unified theory of necessary conditions for nonlinear nonconvex systems. Appl. Math. & Opt., 2, 141-184 Zbl0616.49015
- [12] Fattorini H. & Frankowska H. (to appear) Necessary conditions for infinite dimensional control problems. Zbl0737.49017
- [13] Frankowska H. (1986) Théorème d'application ouverte pour des correspondances. CRAS, Paris302, 559-562 Zbl0588.49008MR845648
- [14] Frankowska H. (1987) An open mapping principle for set-valued maps.J. Math. Analysis & Appl., 127, 172-180 Zbl0643.46034
- [15] Frankowska H. (1987) Local controllability and infinitesimal generators of semigroups of set-valued maps. SIAM J. Control & Optimization, 25, 412- 432 Zbl0625.49015
- [16] Frankowska H. (1987) Théorèmes d'application ouverte et de fonction inverse. CRAS, Paris, 305, 773-776 Zbl0635.46041MR921132
- [17] Frankowska H. (1989) Local controllability of control systems with feedbacks. J. Opt. Th. & Appl., n° 2, (to appear) Zbl0633.93013
- [18] Frankowska H. (to appear) On the linearization of nonlinear control systems and exact reachability. Proceedings of IFIP Conference on Optimal Control of Systems Governed by Partial Differential Equations, Santiago de Compostela, Spain, July 6-9, 1987, Springer Verlag Zbl0677.93042MR987973
- [19] Frankowska H.Some Inverse Mapping Theorems. (to appear) Zbl0727.26014
- [20] Graves L.M. (1950) Some mapping theorem. Duke Math. J., 17, 111-114 Zbl0037.20401MR35398
- [21] Ioffe A.D. (1987) On the local surjection property. J. Nonlinear Analysis, 11, 565-592 Zbl0642.49010MR886649
- [22] Ioffe A.D. & Tikhomirov V.M. (1974) THEORY OF EXTREMAL PROBLEMS. Nauka, Moskow
- [23] Ljusternik L.A. (1934) Conditional extrema of functionals. Mat. Sb., 41, 390-401
- [24] Mangasarian O.L., & Fromovitz S. (1967) The Fritz John necessary optimality conditions in the presence of equality and inequality constraints. J. Math. Analysis & Appl., 17, 37-47 Zbl0149.16701
- [25] Robinson S. (1976) Stability theory for systems of inequalities, part II: differentiable nonlinear systems. SIAM J. Numerical Analysis, 13, 497-513 Zbl0347.90050MR410522
- [26] Rockafellar R.T. (1986) Lipschitzian stability in optimization: the role of nonsmooth analysis. IIASA WP-8646 Zbl0586.49012MR822004
- [27] Rockafellar R.T. (1987) Second-order optimality conditions in nonlinear programming obtained by way of pseudo-derivatives. (preprint)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.