On the blowup of multidimensional semilinear heat equations

Stathis Filippas; Wenxiong Liu

Annales de l'I.H.P. Analyse non linéaire (1993)

  • Volume: 10, Issue: 3, page 313-344
  • ISSN: 0294-1449

How to cite

top

Filippas, Stathis, and Liu, Wenxiong. "On the blowup of multidimensional semilinear heat equations." Annales de l'I.H.P. Analyse non linéaire 10.3 (1993): 313-344. <http://eudml.org/doc/78305>.

@article{Filippas1993,
author = {Filippas, Stathis, Liu, Wenxiong},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {center manifold theory; local structure of the blowup set},
language = {eng},
number = {3},
pages = {313-344},
publisher = {Gauthier-Villars},
title = {On the blowup of multidimensional semilinear heat equations},
url = {http://eudml.org/doc/78305},
volume = {10},
year = {1993},
}

TY - JOUR
AU - Filippas, Stathis
AU - Liu, Wenxiong
TI - On the blowup of multidimensional semilinear heat equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1993
PB - Gauthier-Villars
VL - 10
IS - 3
SP - 313
EP - 344
LA - eng
KW - center manifold theory; local structure of the blowup set
UR - http://eudml.org/doc/78305
ER -

References

top
  1. [1] J. Bebernes and S. Bricher, Final Time Blowup Profiles For Semilinear Parabolic Equations Via Center Manifold Theory, preprint. Zbl0754.35055MR1166561
  2. [2] J. Bebernes and D. Eberly, A description of self similar blow up for dimensions n ≧ 3, Ann. Inst. H. Poincaré, Anal. Non lineaire, Vol. 5, 1988, pp. 1-22. Zbl0726.35018MR936887
  3. [3] M. Berger and R.V. Kohn, A rescalling algorithm for the numerical calculation of blowing up solutions, Comm. Pure Appl., Math., Vol. 41, 1988, pp. 841-863. Zbl0652.65070MR948774
  4. [4] A. Bressan, Stable Blow-up Patterns, J. Diff. Eqns., Vol. 98, 1992, pp. 947-960. Zbl0770.35010MR1168971
  5. [5] X.-Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite-point blowup in one-dimensional semilinear heat equations, J. Diff. Eqns., Vol. 78, 1989, pp. 160-190. Zbl0692.35013MR986159
  6. [6] J. Carr, Applications of centre manifold theory, Springer-Verlag, New York, 1981. Zbl0464.58001MR635782
  7. [7] S. Filippas and R.V. Kohn, Refined Asymptotic for the blowup of ut - Δu = up, Comm. Pure Appl. Math., Vol. 45, 1992, pp. 821-869. Zbl0784.35010MR1164066
  8. [8] A. Friedman, Blow-up of Solutions of Nonlinear Heat and Wave Equations, prcprint. Zbl0761.35045
  9. [9] A. Friedman and Mcleod B., Blowup of positive solutions of semilinear heat equations, Indiana Univ. Math. J., Vol. 34, 1985, pp. 425-447. Zbl0576.35068MR783924
  10. [10] V.A. Galaktionov and S.A. Posashkov, Application of new comparison theorems in the investigation of unbounded solutions of nonlinear parabolic equations, Diff. Urav.22, Vol. 7, 1986, pp. 1165-1173. Zbl0632.35028MR853803
  11. [11] V.A. Galaktionov, M.A. Herrero and J.J.L. Velázquez, The space structure near a blowup point for semilinear heat equations: of a formal approch, USSR Comput. Math. and Math. Physics, Vol. 31, 3, 1991, pp. 399-411. Zbl0747.35014MR1107061
  12. [12] Y. Giga and R.V. Kohn, Asymptotically self similar blowup of semilinear heat equations, Comm. Pure Appli. Math., Vol. 38, 1985, pp. 297-319. Zbl0585.35051
  13. [13] Y. Giga and R.V. Kohn, Characterising blow up using similarity variables, Indiana Univ. Math., Vol. 36, 1987, pp. 1-40. Zbl0601.35052
  14. [14] Y. Giga and R.V. Kohn, Nondegeneracy of blowup for semilienear heat equations, Comm. Pure Appl. Math., Vol. 42, 1989, pp. 297-319. 
  15. [15] M.A. Herrero and J.J.L. Velázquez, Blow-up Behaviour of One-Dimensional Semilinear Parabolic Equations, Ann. Inst. H. Poincaré, Anal. non linéaire, to appear. Zbl0813.35007
  16. [16] M.A. Herrero and J.J.L. Velázquez, Flat Blow-up in One-Dimensional Semilinear Parabolic Equations, Diff. and Integral Eqns., Vol. 5, 5, 1992, pp. 973-997. Zbl0767.35036
  17. [17] M.A. Herrero and J.J.L. Velázquez, Blow-up Profiles in One-Dimensional Semilinear Parabolic Equations, Comm. P.D.E's, Vol. 17, 1992, pp. 205-219. Zbl0772.35027
  18. [18] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag1980. Zbl0435.47001
  19. [19] O.A. Ladyzenskaya, V.A. Solonnikov and N.N. Ural'ceva, Linear and quasilinear equations of parabolic type, Amer. Math. Soc. Transl., American Mathematical Society, Providence, R.I., 1968. Zbl0174.15403
  20. [20] W. Liu, Blowup Behavior for semilinear heat equations: multi-dimensional case, IMA preprint 711, Nov. 1990. 
  21. [21] F. Rellich, Perturbation theory of eigenvalue problems, Lecture Notes, New York University, 1953. 
  22. [22] J.J.L. Velázquez, Local behavior near blowup points for semilinear parabolic equations, J. Diff. Eqns., to appear. Zbl0798.35023
  23. [23] J.J.L. Velázquez, Classification of singularities for blowing up solutions in higher dimensions, Trans. Amer. Math. Soc., to appear. Zbl0803.35015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.