On the blowup of multidimensional semilinear heat equations
Stathis Filippas; Wenxiong Liu
Annales de l'I.H.P. Analyse non linéaire (1993)
- Volume: 10, Issue: 3, page 313-344
- ISSN: 0294-1449
Access Full Article
topHow to cite
topFilippas, Stathis, and Liu, Wenxiong. "On the blowup of multidimensional semilinear heat equations." Annales de l'I.H.P. Analyse non linéaire 10.3 (1993): 313-344. <http://eudml.org/doc/78305>.
@article{Filippas1993,
author = {Filippas, Stathis, Liu, Wenxiong},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {center manifold theory; local structure of the blowup set},
language = {eng},
number = {3},
pages = {313-344},
publisher = {Gauthier-Villars},
title = {On the blowup of multidimensional semilinear heat equations},
url = {http://eudml.org/doc/78305},
volume = {10},
year = {1993},
}
TY - JOUR
AU - Filippas, Stathis
AU - Liu, Wenxiong
TI - On the blowup of multidimensional semilinear heat equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1993
PB - Gauthier-Villars
VL - 10
IS - 3
SP - 313
EP - 344
LA - eng
KW - center manifold theory; local structure of the blowup set
UR - http://eudml.org/doc/78305
ER -
References
top- [1] J. Bebernes and S. Bricher, Final Time Blowup Profiles For Semilinear Parabolic Equations Via Center Manifold Theory, preprint. Zbl0754.35055MR1166561
- [2] J. Bebernes and D. Eberly, A description of self similar blow up for dimensions n ≧ 3, Ann. Inst. H. Poincaré, Anal. Non lineaire, Vol. 5, 1988, pp. 1-22. Zbl0726.35018MR936887
- [3] M. Berger and R.V. Kohn, A rescalling algorithm for the numerical calculation of blowing up solutions, Comm. Pure Appl., Math., Vol. 41, 1988, pp. 841-863. Zbl0652.65070MR948774
- [4] A. Bressan, Stable Blow-up Patterns, J. Diff. Eqns., Vol. 98, 1992, pp. 947-960. Zbl0770.35010MR1168971
- [5] X.-Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite-point blowup in one-dimensional semilinear heat equations, J. Diff. Eqns., Vol. 78, 1989, pp. 160-190. Zbl0692.35013MR986159
- [6] J. Carr, Applications of centre manifold theory, Springer-Verlag, New York, 1981. Zbl0464.58001MR635782
- [7] S. Filippas and R.V. Kohn, Refined Asymptotic for the blowup of ut - Δu = up, Comm. Pure Appl. Math., Vol. 45, 1992, pp. 821-869. Zbl0784.35010MR1164066
- [8] A. Friedman, Blow-up of Solutions of Nonlinear Heat and Wave Equations, prcprint. Zbl0761.35045
- [9] A. Friedman and Mcleod B., Blowup of positive solutions of semilinear heat equations, Indiana Univ. Math. J., Vol. 34, 1985, pp. 425-447. Zbl0576.35068MR783924
- [10] V.A. Galaktionov and S.A. Posashkov, Application of new comparison theorems in the investigation of unbounded solutions of nonlinear parabolic equations, Diff. Urav.22, Vol. 7, 1986, pp. 1165-1173. Zbl0632.35028MR853803
- [11] V.A. Galaktionov, M.A. Herrero and J.J.L. Velázquez, The space structure near a blowup point for semilinear heat equations: of a formal approch, USSR Comput. Math. and Math. Physics, Vol. 31, 3, 1991, pp. 399-411. Zbl0747.35014MR1107061
- [12] Y. Giga and R.V. Kohn, Asymptotically self similar blowup of semilinear heat equations, Comm. Pure Appli. Math., Vol. 38, 1985, pp. 297-319. Zbl0585.35051
- [13] Y. Giga and R.V. Kohn, Characterising blow up using similarity variables, Indiana Univ. Math., Vol. 36, 1987, pp. 1-40. Zbl0601.35052
- [14] Y. Giga and R.V. Kohn, Nondegeneracy of blowup for semilienear heat equations, Comm. Pure Appl. Math., Vol. 42, 1989, pp. 297-319.
- [15] M.A. Herrero and J.J.L. Velázquez, Blow-up Behaviour of One-Dimensional Semilinear Parabolic Equations, Ann. Inst. H. Poincaré, Anal. non linéaire, to appear. Zbl0813.35007
- [16] M.A. Herrero and J.J.L. Velázquez, Flat Blow-up in One-Dimensional Semilinear Parabolic Equations, Diff. and Integral Eqns., Vol. 5, 5, 1992, pp. 973-997. Zbl0767.35036
- [17] M.A. Herrero and J.J.L. Velázquez, Blow-up Profiles in One-Dimensional Semilinear Parabolic Equations, Comm. P.D.E's, Vol. 17, 1992, pp. 205-219. Zbl0772.35027
- [18] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag1980. Zbl0435.47001
- [19] O.A. Ladyzenskaya, V.A. Solonnikov and N.N. Ural'ceva, Linear and quasilinear equations of parabolic type, Amer. Math. Soc. Transl., American Mathematical Society, Providence, R.I., 1968. Zbl0174.15403
- [20] W. Liu, Blowup Behavior for semilinear heat equations: multi-dimensional case, IMA preprint 711, Nov. 1990.
- [21] F. Rellich, Perturbation theory of eigenvalue problems, Lecture Notes, New York University, 1953.
- [22] J.J.L. Velázquez, Local behavior near blowup points for semilinear parabolic equations, J. Diff. Eqns., to appear. Zbl0798.35023
- [23] J.J.L. Velázquez, Classification of singularities for blowing up solutions in higher dimensions, Trans. Amer. Math. Soc., to appear. Zbl0803.35015
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.