Curvature blow-up in perturbations of minimal cones evolving by mean curvature flow

J. J. L. Velázquez

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1994)

  • Volume: 21, Issue: 4, page 595-628
  • ISSN: 0391-173X

How to cite

top

Velázquez, J. J. L.. "Curvature blow-up in perturbations of minimal cones evolving by mean curvature flow." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 21.4 (1994): 595-628. <http://eudml.org/doc/84193>.

@article{Velázquez1994,
author = {Velázquez, J. J. L.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {generalized solutions; singularities; fast and slow blow up},
language = {eng},
number = {4},
pages = {595-628},
publisher = {Scuola normale superiore},
title = {Curvature blow-up in perturbations of minimal cones evolving by mean curvature flow},
url = {http://eudml.org/doc/84193},
volume = {21},
year = {1994},
}

TY - JOUR
AU - Velázquez, J. J. L.
TI - Curvature blow-up in perturbations of minimal cones evolving by mean curvature flow
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1994
PB - Scuola normale superiore
VL - 21
IS - 4
SP - 595
EP - 628
LA - eng
KW - generalized solutions; singularities; fast and slow blow up
UR - http://eudml.org/doc/84193
ER -

References

top
  1. [AlAG] S.J. Altschuler - S.B. Angenent - Y. Giga, Motion by Mean Curvature through singularities for surfaces of rotation. Preprint (1991). 
  2. [AG] S.J. Altschuler - M.A. Grayson, Shortening space curves and flow through singularities. IMA Preprint823 (1991). MR1158337
  3. [A1] S.B. Angenent, Parabolic equations for curves on surfaces. Part. I, Ann. Math. 132 (1990), 451-483. Zbl0789.58070MR1078266
  4. [A2] S.B. Angenent, Parabolic equations for curves on surfaces. Part. II, Ann. Math. 133 (1991), 171-215. Zbl0749.58054MR1087347
  5. [A3] S.B. Angenent, On the formation of singularities in the curve shortening flow. J. Differential Geom.33 (1991), 601-633. Zbl0731.53002MR1100205
  6. [A4] S.B. Angenent, Some recent results on Mean Curvature Flow. In: Recent Advances in PDE's. M.A. Herrero - E. Zuazua eds., Research in Applied Math., Masson & J. Wiley, 1994, 1-18. Zbl0796.35068MR1266199
  7. [AV1] S.B. Angenent - J.J.L. Velázquez, Nonconvex collapse at rotationally symmetric hypersurfaces evolving by mean curvature flow. In preparation. 
  8. [AV2] S.B. Angenent - J.J.L. Velázquez, Asymptotic shape of cusp singularities in curve shortening. Duke Math. J., in press. Zbl0829.35058MR1317628
  9. [BDGG] E. Bombieri - E. De Giorgi - E. Giusti, Minimal cones and the Bernstein problem. Inv. Math.7 (1969), 243-268. Zbl0183.25901MR250205
  10. [B] K.A. Brakke, The motion of a surface by its mean curvature. Princeton University Press, Math. Notes, Princeton, New Jersey, 1978. Zbl0386.53047MR485012
  11. [B1] A. Bressan, On the asymptotic shape of blow-up. Indiana Univ. Math. J.39 (1990), 947-960. Zbl0705.35014MR1087180
  12. [B2] A. Bressan, Stable blow-up patterns. J. Differential Equations.98 (1992), 57-75. Zbl0770.35010MR1168971
  13. [BQ] C.J. Budd - Y.W. Qi, The existence of bounded solutions of a semilinear heat equation. J. Differential Equations82 (1989), 207-218. Zbl0709.35039MR1027967
  14. [CGG] Y.G. Chen - Y. Giga - S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow. J. Differential Geom.33 (1991), 749-786. Zbl0696.35087MR1100211
  15. [DG] E. De Giorgi, Some conjectures on flow by mean curvature. Preprint. 
  16. [ESS] L.C. Evans - H.M. Soner - P.E. Souganidis, Phase Transitions and generalized mean curvature flow equations. To appear in Comm. Pure Appl. Math. MR1177477
  17. [ES] L.C. Evans - J. Spruck, Motion of level sets by mean curvature I. J. Differential Geom.33 (1991), 635-681. Zbl0726.53029MR1100206
  18. [F] H. Federer, Geometric measure theory. Springer Verlag, New York, 1969. Zbl0176.00801MR257325
  19. [FK] S. Filippas - R.V. Kohn, Refined asymptotics for the blow-up of u t-Δu=up. Comm. Pure Appl. Math.45 (1992), 821-869. Zbl0784.35010
  20. [FL] S. Filippas - W. Liu, On the blow-up of a multidimensional semilinear heat equation. Ann. Inst. H. Poincaré Anal. Non Linéaire10 (1993), 313-344. Zbl0815.35039MR1230711
  21. [GH] M. Gage - R.S. Hamilton, The heat equation shrinking plane convex curves. J. Differential Geom.23 (1986), 69-96. Zbl0621.53001MR840401
  22. [GP] V.A. Galaktionov - S.A. Posashkov, The equation ut=uxx +uB. Localization, asymptotic behaviour of unbounded solutions, Preprint N. 97, M. Keldish, Inst. Appl. Math. (1985), (in russian). MR832277
  23. [GaP] A. Galindo - P. Pascual, Quantum Mechanics. Vol. I (1990) and vol. II (1991), Springer Verlag. Zbl0824.00008
  24. [G] E. Giusti, Minimal surfaces and functions of bounded variation. Birkhäuser, Boston, 1984. Zbl0545.49018MR775682
  25. [GK1] Y. Giga - R.V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations. Comm. Pure Appl. Math.38 (1985), 297-319. Zbl0585.35051MR784476
  26. [GK2] Y. Giga - R.V. Kohn, Characterizing blow-up using similarity variables. Indiana Univ. Math. J.36 (1987), 1-40. Zbl0601.35052MR876989
  27. [GK3] Y. Giga - R.V. Kohn, Nondegeneracy of blow-up for semilinear heat equations. Comm. Pure Appl. Math.42 (1987), 845-884. Zbl0703.35020MR1003437
  28. [Gr] M. Grayson, The heat equation shrinks embedded plane curves to round points. J. Differential Geom.26 (1987), 285-314. Zbl0667.53001MR906392
  29. [HV1] M.A. Herrero - J.J.L. Velázquez, Blow-up behaviour of one-dimensional semilinear parabolic equations. Ann. Inst. Henri Poincaré10 (1993), 131-189. Zbl0813.35007MR1220032
  30. [HV2] M.A. Herrero - J.J.L. Velázquez, Flat blow-up in one-dimensional semilinear heat equations. Differential Integral Equations5 (1992), 973-998. Zbl0767.35036MR1171974
  31. [HV3] M.A. Herrero - J.J.L. Velázquez, Blow-up profiles in one-dimensional semilinear parabolic problems. Comm. Partial Differential Equations17 (1992), 205-219. Zbl0772.35027MR1151261
  32. [HV4] M.A. Herrero - J.J.L. Velázquez, Generic behaviour of one-dimensional blow-up patterns. Ann. Scuola Norm. Sup. Pisa, Cl. Sci.19 (1992), 381-450. Zbl0798.35081MR1205406
  33. [HV5] M.A. Herrero - J.J.L. Velázquez, Generic behaviour near blow-up points for a N-dimensional semilinear heat equation. In preparation. 
  34. [HV6] M.A. Herrero - J.J.L. Velázquez, A blow-up result for semilinear heat equations in the supercritical case. To appear. 
  35. [HV7] M.A. Herrero - J.J.L. Velázquez, Explosion de solutions d'equations paraboliques semilinéaires supercritiques. C.R. Acad. Sci. Paris319 (1994), 141-145. Zbl0806.35005MR1288393
  36. [H] G. Huisken, Asymptotic behaviour for singularities of the mean curvature flow. J. Differential Geom.31 (1991), 285-299. Zbl0694.53005MR1030675
  37. [LSU] O.A. Ladyshenskaya - N.N. Solonnikov - V.A. Uralceva, Linear and quasilinear equations of parabolic type, Translations of Mathematical monographs, A.M.S. vol. 23, 1988. Zbl0174.15403
  38. [L] L.A. Lepin, Countable spectrum at eigenfunctions of a nonlinear heat conduction equation with distributed parameters. Differentsial'nye Uravneiya24, 7 (1988), 1226-1234. Zbl0675.35054MR958417
  39. [RS] M. Reed - B. Simon, Functional analysis, vol. II, Academic Press (1980). MR751959
  40. [S] J. Simons, Minimal varieties in riemannian manifolds. Ann. of Math.88 (1968), 62-106. Zbl0181.49702MR233295
  41. [So] H.M. Soner, Motion of a set by the curvature of its boundary. J. Differential Equations101 (1993), 313-372. Zbl0769.35070MR1204331
  42. [T] W.C. Troy, The existence of bounded solutions of a semilinear heat equation. SIAM J. Math. Anal. vol. 18, 2 (1987), 332-336. Zbl0655.35039MR876275
  43. [V1] J.J.L. Velázquez, Classification of singularities for blowing up solutions in higher dimensions. Trans. Amer. Math. Soc.338 (1993), 441-464. Zbl0803.35015MR1134760
  44. [V2] J.J.L. Velázquez, Higher dimensional blow-up for semilinear parabolic equations. Comm. Partial Differential Equations17 (1992), 1567-1596. Zbl0813.35009MR1187622
  45. [V3] J.J.L. Velázquez, Estimates on the (N-1)-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation. Indiana Univ. Math. J.42 (1993), 446-476. Zbl0802.35073MR1237055
  46. [V4] J.J.L. Velázquez, Blow-up for semilinear parabolic equations. In Recent Advances in PDE's, M.A. Herrero - E. Zuazua eds., Research in Applied Math., Masson & J. Wiley, 1994, 131-145. Zbl0798.35072MR1266206

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.