Topological solutions in the self-dual Chern-Simons theory : existence and approximation
Annales de l'I.H.P. Analyse non linéaire (1995)
- Volume: 12, Issue: 1, page 75-97
- ISSN: 0294-1449
Access Full Article
topHow to cite
topSpruck, Joel, and Yang, Yisong. "Topological solutions in the self-dual Chern-Simons theory : existence and approximation." Annales de l'I.H.P. Analyse non linéaire 12.1 (1995): 75-97. <http://eudml.org/doc/78353>.
@article{Spruck1995,
author = {Spruck, Joel, Yang, Yisong},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Sobolev embeddings; topological multivortex solution; self-dual Chern- Simons theory; monotone iterative algorithm},
language = {eng},
number = {1},
pages = {75-97},
publisher = {Gauthier-Villars},
title = {Topological solutions in the self-dual Chern-Simons theory : existence and approximation},
url = {http://eudml.org/doc/78353},
volume = {12},
year = {1995},
}
TY - JOUR
AU - Spruck, Joel
AU - Yang, Yisong
TI - Topological solutions in the self-dual Chern-Simons theory : existence and approximation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1995
PB - Gauthier-Villars
VL - 12
IS - 1
SP - 75
EP - 97
LA - eng
KW - Sobolev embeddings; topological multivortex solution; self-dual Chern- Simons theory; monotone iterative algorithm
UR - http://eudml.org/doc/78353
ER -
References
top- [1] E. Bogomol'nyi, The stability of classical solutions, Sov. J. Nucl. Phys., Vol. 24, 1976, pp. 449-454. MR443719
- [2] H.J. de Vega and F. Schaposnik, Electrically charged vortices in nonabelian gauge theories with Chern-Simons term, Phys. Rev. Lett., Vol. 56, 1986, pp. 2564-2566. MR845964
- [3] J. Fröhlich and P. Marchetti, Quantum field theory of anyons, Lett. Math. Phys., Vol. 16, 1988, pp. 347-358. Zbl0695.58031MR974482
- [4] J. Fröhlich and P. Marchetti, Quantum field theory of vortices and anyons, Commun. Math. Phys., Vol. 121, 1989, pp. 177-223. Zbl0819.58045MR985396
- [5] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1977. Zbl0361.35003MR473443
- [6] J. Hong, Y. Kim and P. Pac, Multivortex solutions of the abelian Chern-Simons-Higgs theory, Phys. Rev. Lett., Vol. 64, 1990, pp. 2230-2233. Zbl1014.58500MR1050529
- [7] R. Jackiw, Solitons in Chern-Simons/anyons systems, Preprint. Zbl0947.81531MR1118210
- [8] R. Jackiw, K. Lee and E. Weinberg, Self-dual Chern-Simons solitons, Phys. Rev. D., Vol. 42, 1990, pp. 3488-3499. MR1084551
- [9] R. Jackiw, S.-Y. Pi and E. Weinberg, Topological and non-topological solitons in relativistic and non-relativistic Chern-Simons theory, Preprint.
- [10] R. Jackiw and E. Weinberg, Self-dual Chern-Simons vortices, Phys. Rev. Lett., Vol. 64, 1990, pp. 2234-2237. Zbl1050.81595MR1050530
- [11] A. Jaffe and C.H. Taubes, Vortices and Monopoles, Birkhaüser, Boston, 1980. Zbl0457.53034MR614447
- [12] B. Julia and A. Zee, Poles with both magnetic and electric charges in nonabelian gauge theory, Phys. Rev. D., Vol. 11, 1975, pp. 2227-2232.
- [13] H. Nielsen and P. Olesen, Vortex-line models for dual-strings, Nucl. Phys. B, Vol. 61, 1973, pp. 45-61.
- [14] S. Paul and A. Khare, Charged vortices in an abelian Higgs model with Chern-Simons term, Phys. Lett. B, Vol. 174, 1986, pp. 420-422. MR855612
- [15] S. Paul and A. Khare, Charged vortex of finite energy in nonabelian gauge theories with Chern-Simons term, Phys. Lett. B, Vol. 178, 1986, pp. 395-399. Annales de l'Institut Henri Poincaré - Analyse non linéaire MR898176
- [16] J. Spruck and Y. Yang, The existence of non-topological solitons in the self-dual Chern-Simons theory, Commun. Math. Phys., Vol. 149, 1992, pp. 361-376. Zbl0760.53063MR1186034
- [17] C. Taubes, On the equivalence of the first and second order equations for gauge theories, Commun. Math. Phys., Vol. 75, 1980, pp. 207-227. Zbl0448.58029MR581946
- [18] R. Wang, The existence of Chern-Simons vortices, Commun. Math. Phys., Vol. 137, 1991, pp. 587-597. Zbl0733.58009MR1105432
- [19] S. Wang and Y. Yang, Abrikosov's vortices in the critical coupling, SIAM J. Math. Anal., Vol. 23, 1992, pp. 1125-1140. Zbl0753.35111MR1177781
- [20] S. Wang and Y. Yang, Solutions of the generalized Bogomol'nyi equations via monotone iterations, J. Math. Phys., Vol. 33, 1992, pp. 4239-4249. Zbl0767.35085MR1191785
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.