Topological solutions in the self-dual Chern-Simons theory : existence and approximation

Joel Spruck; Yisong Yang

Annales de l'I.H.P. Analyse non linéaire (1995)

  • Volume: 12, Issue: 1, page 75-97
  • ISSN: 0294-1449

How to cite

top

Spruck, Joel, and Yang, Yisong. "Topological solutions in the self-dual Chern-Simons theory : existence and approximation." Annales de l'I.H.P. Analyse non linéaire 12.1 (1995): 75-97. <http://eudml.org/doc/78353>.

@article{Spruck1995,
author = {Spruck, Joel, Yang, Yisong},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Sobolev embeddings; topological multivortex solution; self-dual Chern- Simons theory; monotone iterative algorithm},
language = {eng},
number = {1},
pages = {75-97},
publisher = {Gauthier-Villars},
title = {Topological solutions in the self-dual Chern-Simons theory : existence and approximation},
url = {http://eudml.org/doc/78353},
volume = {12},
year = {1995},
}

TY - JOUR
AU - Spruck, Joel
AU - Yang, Yisong
TI - Topological solutions in the self-dual Chern-Simons theory : existence and approximation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1995
PB - Gauthier-Villars
VL - 12
IS - 1
SP - 75
EP - 97
LA - eng
KW - Sobolev embeddings; topological multivortex solution; self-dual Chern- Simons theory; monotone iterative algorithm
UR - http://eudml.org/doc/78353
ER -

References

top
  1. [1] E. Bogomol'nyi, The stability of classical solutions, Sov. J. Nucl. Phys., Vol. 24, 1976, pp. 449-454. MR443719
  2. [2] H.J. de Vega and F. Schaposnik, Electrically charged vortices in nonabelian gauge theories with Chern-Simons term, Phys. Rev. Lett., Vol. 56, 1986, pp. 2564-2566. MR845964
  3. [3] J. Fröhlich and P. Marchetti, Quantum field theory of anyons, Lett. Math. Phys., Vol. 16, 1988, pp. 347-358. Zbl0695.58031MR974482
  4. [4] J. Fröhlich and P. Marchetti, Quantum field theory of vortices and anyons, Commun. Math. Phys., Vol. 121, 1989, pp. 177-223. Zbl0819.58045MR985396
  5. [5] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1977. Zbl0361.35003MR473443
  6. [6] J. Hong, Y. Kim and P. Pac, Multivortex solutions of the abelian Chern-Simons-Higgs theory, Phys. Rev. Lett., Vol. 64, 1990, pp. 2230-2233. Zbl1014.58500MR1050529
  7. [7] R. Jackiw, Solitons in Chern-Simons/anyons systems, Preprint. Zbl0947.81531MR1118210
  8. [8] R. Jackiw, K. Lee and E. Weinberg, Self-dual Chern-Simons solitons, Phys. Rev. D., Vol. 42, 1990, pp. 3488-3499. MR1084551
  9. [9] R. Jackiw, S.-Y. Pi and E. Weinberg, Topological and non-topological solitons in relativistic and non-relativistic Chern-Simons theory, Preprint. 
  10. [10] R. Jackiw and E. Weinberg, Self-dual Chern-Simons vortices, Phys. Rev. Lett., Vol. 64, 1990, pp. 2234-2237. Zbl1050.81595MR1050530
  11. [11] A. Jaffe and C.H. Taubes, Vortices and Monopoles, Birkhaüser, Boston, 1980. Zbl0457.53034MR614447
  12. [12] B. Julia and A. Zee, Poles with both magnetic and electric charges in nonabelian gauge theory, Phys. Rev. D., Vol. 11, 1975, pp. 2227-2232. 
  13. [13] H. Nielsen and P. Olesen, Vortex-line models for dual-strings, Nucl. Phys. B, Vol. 61, 1973, pp. 45-61. 
  14. [14] S. Paul and A. Khare, Charged vortices in an abelian Higgs model with Chern-Simons term, Phys. Lett. B, Vol. 174, 1986, pp. 420-422. MR855612
  15. [15] S. Paul and A. Khare, Charged vortex of finite energy in nonabelian gauge theories with Chern-Simons term, Phys. Lett. B, Vol. 178, 1986, pp. 395-399. Annales de l'Institut Henri Poincaré - Analyse non linéaire MR898176
  16. [16] J. Spruck and Y. Yang, The existence of non-topological solitons in the self-dual Chern-Simons theory, Commun. Math. Phys., Vol. 149, 1992, pp. 361-376. Zbl0760.53063MR1186034
  17. [17] C. Taubes, On the equivalence of the first and second order equations for gauge theories, Commun. Math. Phys., Vol. 75, 1980, pp. 207-227. Zbl0448.58029MR581946
  18. [18] R. Wang, The existence of Chern-Simons vortices, Commun. Math. Phys., Vol. 137, 1991, pp. 587-597. Zbl0733.58009MR1105432
  19. [19] S. Wang and Y. Yang, Abrikosov's vortices in the critical coupling, SIAM J. Math. Anal., Vol. 23, 1992, pp. 1125-1140. Zbl0753.35111MR1177781
  20. [20] S. Wang and Y. Yang, Solutions of the generalized Bogomol'nyi equations via monotone iterations, J. Math. Phys., Vol. 33, 1992, pp. 4239-4249. Zbl0767.35085MR1191785

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.