On the symmetry of blowup solutions to a mean field equation

Chuin Chuan Chen; Chang-Shou Lin

Annales de l'I.H.P. Analyse non linéaire (2001)

  • Volume: 18, Issue: 3, page 271-296
  • ISSN: 0294-1449

How to cite

top

Chen, Chuin Chuan, and Lin, Chang-Shou. "On the symmetry of blowup solutions to a mean field equation." Annales de l'I.H.P. Analyse non linéaire 18.3 (2001): 271-296. <http://eudml.org/doc/78521>.

@article{Chen2001,
author = {Chen, Chuin Chuan, Lin, Chang-Shou},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {mean field equation; moving plane; blow-up solutions; symmetries},
language = {eng},
number = {3},
pages = {271-296},
publisher = {Elsevier},
title = {On the symmetry of blowup solutions to a mean field equation},
url = {http://eudml.org/doc/78521},
volume = {18},
year = {2001},
}

TY - JOUR
AU - Chen, Chuin Chuan
AU - Lin, Chang-Shou
TI - On the symmetry of blowup solutions to a mean field equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2001
PB - Elsevier
VL - 18
IS - 3
SP - 271
EP - 296
LA - eng
KW - mean field equation; moving plane; blow-up solutions; symmetries
UR - http://eudml.org/doc/78521
ER -

References

top
  1. [1] Bandle C, Isoperimetric Inequalities and Applications, Pitman, Boston, 1980. Zbl0436.35063MR572958
  2. [2] Brezis H, Merle F, Uniform estimates and blow-up behavior for solutions of −Δu=V(x)eu in two dimensions, Comm. Partial Differential Equations16 (1991) 1223-1254. Zbl0746.35006
  3. [3] Brezis H, Li Y.Y, Shafrir I, A sup + inf inequality for some nonlinear elliptic equations involving exponential nonlinearities, J. Functional Anal.115 (1993) 344-358. Zbl0794.35048MR1234395
  4. [4] Caffarelli L, Yang Y, Vortex condensation in the Chern–Simons Higgs model: An existence theorem, Comm. Math. Phys.168 (1995) 321-336. Zbl0846.58063
  5. [5] Chanillo S, Kiessling M, Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry, Comm. Math. Phys.160 (1994) 217-238. Zbl0821.35044MR1262195
  6. [6] Caglioti E, Lions P.L, Marchioro C, Pulvirenti M, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, Comm. Math. Phys.143 (1992) 501-525. Zbl0745.76001MR1145596
  7. [7] Caglioti E, Lions P.L, Marchioro C, Pulvirenti M, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, part II, Comm. Math. Phys.174 (1995) 229-260. Zbl0840.76002MR1362165
  8. [8] Chen C.C, Lin C.S, A sharp sup+inf inequality for a nonlinear equation in R2, Comm. Anal. Geom.6 (1998) 1-19. Zbl0903.35009MR1619837
  9. [9] Chen C.C., Lin C.S., Singular limits of a nonlinear eigenvalue problem in two dimensions, preprint. 
  10. [10] Chen W, Li C, Classification of solutions of some nonlinear elliptic equations, Duke Math. J.63 (1991) 615-623. Zbl0768.35025MR1121147
  11. [11] Ding W, Jost J, Li J, Wang G, The differential equation Δu=8π−8πheu on a compact Riemann surface, Asian J. Math.1 (1997) 230-248. Zbl0955.58010
  12. [12] Ding W., Jost J., Li J., Wang G., Existence results for mean field equations, preprint. Zbl0937.35055
  13. [13] Gidas B, Ni W.M, Nirenberg L, Symmetry of positive solutions of nonlinear elliptic equations in Rn, in: Nachbin L (Ed.), Math. Anal. and Applications, Part A, Advances in Math. Suppl. Studies 7A, Academic Press, New York, 1981, pp. 369-402. Zbl0469.35052MR634248
  14. [14] Li Y.Y, Harnack type inequality: the method of moving planes, Comm. Math. Phys.200 (1999) 421-444. Zbl0928.35057MR1673972
  15. [15] Li Y.Y, Shafrir I, Blowup analysis for solutions −Δu=Veu in dimension two, Indiana Univ. Math. J.43 (1994) 1255-1270. Zbl0842.35011
  16. [16] Lin C.S, The topological degree for the mean field equation on S2, Duke Math. J.104 (2000) 501-536. Zbl0964.35038MR1781481
  17. [17] Moseley J.L, Asymptotic solutions for a Dirichlet problem with an exponential nonlinearity, SIAM J. Math. Anal.14 (1983) 719-735. Zbl0524.35046MR704487
  18. [18] Moseley J.L, A two-dimensional Dirichlet problem with an exponential nonlinearity, SIAM J. Math. Anal.14 (1983) 934-946. Zbl0543.35036MR711174
  19. [19] Nagasaki K, Suzuki T, Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearity, Asymptotic Analysis3 (1990) 173-188. Zbl0726.35011MR1061665
  20. [20] Nolasco M, Tarantello G, On a sharp type inequality on two dimensional compact manifolds, Arch. Rational Mech. Anal.145 (1998) 161-195. Zbl0980.46022MR1664542
  21. [21] Spruck J, Yang Y, Topological solutions in the self-dual Chern–Simons theory: existence and approximation, Ann. Inst. H. Poincáre Anal. Non Linéaire12 (1995) 75-97. Zbl0836.35007
  22. [22] Struwe M, Tarantello G, On multivortex solutions in Chern–Simons Gauge theory, Boll. Unione Math. Ital. Sez. B Artic. Ric. Mat.8 (1) (1998) 109-121. Zbl0912.58046
  23. [23] Suzuki T, Global analysis for a two-dimensional elliptic eigenvalues problem with the exponential nonlinearity, Ann. Inst. Henri Poincaŕe, Anal. Non-Linéaire9 (1992) 367-398. Zbl0785.35045MR1186683
  24. [24] Tarantello G, Multiple condensate solutions for the Chern–Simons–Higgs theory, J. Math. Phys.37 (1996) 3769-3796. Zbl0863.58081
  25. [25] Weston V.H, On the asymptotic solution of a partial differential equation with an exponential nonlinearity, SIAM J. Math. Anal.9 (1978) 1030-1053. Zbl0402.35038MR512508

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.