Liouville theorems for semilinear equations on the Heisenberg group
I. Birindelli; I. Capuzzo Dolcetta; A. Cutrì
Annales de l'I.H.P. Analyse non linéaire (1997)
- Volume: 14, Issue: 3, page 295-308
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBirindelli, I., Capuzzo Dolcetta, I., and Cutrì, A.. "Liouville theorems for semilinear equations on the Heisenberg group." Annales de l'I.H.P. Analyse non linéaire 14.3 (1997): 295-308. <http://eudml.org/doc/78412>.
@article{Birindelli1997,
author = {Birindelli, I., Capuzzo Dolcetta, I., Cutrì, A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Heisenberg Laplacian},
language = {eng},
number = {3},
pages = {295-308},
publisher = {Gauthier-Villars},
title = {Liouville theorems for semilinear equations on the Heisenberg group},
url = {http://eudml.org/doc/78412},
volume = {14},
year = {1997},
}
TY - JOUR
AU - Birindelli, I.
AU - Capuzzo Dolcetta, I.
AU - Cutrì, A.
TI - Liouville theorems for semilinear equations on the Heisenberg group
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1997
PB - Gauthier-Villars
VL - 14
IS - 3
SP - 295
EP - 308
LA - eng
KW - Heisenberg Laplacian
UR - http://eudml.org/doc/78412
ER -
References
top- [1] H. Berestycki, I. Capuzzo Dolcetta and L. Nirenberg, Problèmes elliptiques indéfinis et théorèmes de Liouville non-linéaires, C. R. Acad. Sci. Paris , Série I, Vol. 317, 1993, pp. 945-950. Zbl0820.35056MR1249366
- [2] H. Berestycki, I. Capuzzo Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems. Topological Methods in Nonlinear Analysis, Vol. 4.1, 1995, pp. 59-78. Zbl0816.35030MR1321809
- [3] I. Birindelli, I. Capuzzo Dolcetta and A. Cutri, Indefinite semi-linear equations on the Heisenberg group: a priori bounds and existence, Preprint. Zbl0876.35033MR1642599
- [4] J.M. Bony, Principe du Maximum, Inégalité de Harnack et unicité du problème de Cauchy pour les operateurs elliptiques dégénérés, Ann. Inst. Fourier Grenobles, Vol. 19,1,1969, pp. 277-304. Zbl0176.09703MR262881
- [5] M. Esteban and P.-L. Lions, Existence and non-existence results for semilinear elliptic problems in unbounded domainsProc. R.S.E.(A), Vol. 93A,1982, pp. 1-14. Zbl0506.35035MR688279
- [6] G.B. Folland, Fondamental solution for subelliptic operators, Bull. Amer. Math. Soc., Vol. 79, 1979, pp. 373-376. Zbl0256.35020MR315267
- [7] G.B. Folland and E.M. Stein, Estimates for the ∂h complex and analysis on the Heisenberg Group, Comm. Pure Appl.Math., Vol. 27, 1974, pp. 492-522. Zbl0293.35012MR367477
- [8] N. Garofalo and E. Lanconelli, Existence and non existence results for semilinear equations on the Heisenberg group, Indiana Univ. Math. Journ., Vol. 41, 1992, pp. 71-97. Zbl0793.35037MR1160903
- [9] B. Gaveau, Principe de moindre action, propagation de la chaleur et estimeé sous elliptiques sur certain groups nilpotents, Acta Math., Vol. 139, 1977, pp. 95-153. Zbl0366.22010MR461589
- [10] B. Gidas and J. SpruckGlobal and local behavior of positive solutions of nonlinear elliptic equationsComm. Pure Appl. Math, Vol. 35, 1981, pp. 525-598. Zbl0465.35003MR615628
- [11] D. Gilbarg and N.S. TrudingerElliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983. Zbl0562.35001MR737190
- [12] P.C. Greiner, Spherical harmonics in the Heisenberg group, Canad. Math. Bull., Vol. 23 (4), 1980, pp. 383-396. Zbl0496.22012MR602590
- [13] L. Hormander, Hypoelliptic second order differential equations, Acta Math., Uppsala, Vol. 119, 1967, pp. 147-171. Zbl0156.10701MR222474
Citations in EuDML Documents
top- Francesco Uguzzoni, Asymptotic behavior of solutions of Schrödinger inequalities on unbounded domains of nilpotent Lie groups
- Alessandra Cutrì, Fabiana Leoni, On the Liouville property for fully nonlinear equations
- Italo Capuzzo Dolcetta, Alessandra Cutrì, On the Liouville property for sublaplacians
- Alessandra Cutrì, Problemi semilineari ed integro-differenziali per Sublaplaciani
- E. Lanconelli, F. Uguzzoni, Asymptotic behavior and non-existence theorems for semilinear Dirichlet problems involving critical exponent on unbounded domains of the Heisenberg group
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.