On the Liouville property for sublaplacians

Italo Capuzzo Dolcetta; Alessandra Cutrì

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 25, Issue: 1-2, page 239-256
  • ISSN: 0391-173X

How to cite

top

Capuzzo Dolcetta, Italo, and Cutrì, Alessandra. "On the Liouville property for sublaplacians." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.1-2 (1997): 239-256. <http://eudml.org/doc/84287>.

@article{CapuzzoDolcetta1997,
author = {Capuzzo Dolcetta, Italo, Cutrì, Alessandra},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1-2},
pages = {239-256},
publisher = {Scuola normale superiore},
title = {On the Liouville property for sublaplacians},
url = {http://eudml.org/doc/84287},
volume = {25},
year = {1997},
}

TY - JOUR
AU - Capuzzo Dolcetta, Italo
AU - Cutrì, Alessandra
TI - On the Liouville property for sublaplacians
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 1-2
SP - 239
EP - 256
LA - eng
UR - http://eudml.org/doc/84287
ER -

References

top
  1. [1] H. Berestycki - I. Capuzzo Dolcetta - L. Nirenberg, Problèmes elliptiques indéfinis et théorèmes de Liouville non-linéaires, C. R. Acad. Sci. Paris, Série 1317 (1993), 945-950. Zbl0820.35056MR1249366
  2. [2] H. Berestycki - I. Capuzzo Dolcetta - L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topological Methods in Nonlinear Analysis4,1 (1995) 59-78. Zbl0816.35030MR1321809
  3. [3] S. Biagini, Positive solutions for a semilinear equation on the Heisenberg group, Bull. UMI9, B (1995), 883-900. Zbl0863.35036MR1369383
  4. [4] I. Birindelli, Nonlinear Liouville theorems, to appear in "Reaction Diffusion Systems", Caristi and Mitidieri (eds) Zbl0984.35061MR1472507
  5. [5] I. Birindelli - I. Capuzzo Dolcetta - A. Cutri, Liouville theorems for semilinear equations on the Heisenberg group, Ann. Inst. Henri Poincaré, Analyse Non Linéaire14,3 (1997), 295-308. Zbl0876.35033MR1450950
  6. [6] I. Birindelli - I. Capuzzo Dolcetta - A. Cutri, Indefinite semi-linear equations on the Heisenberg group: a priori bounds and existence, to appear in Comm. Partial Diff. Eq. Zbl0965.35019MR1642599
  7. [7] J.M. Bony, Principe du Maximum, Inégalité de Harnack et unicité du problème de Cauchy pour les operateurs elliptiques dégénérés, Ann. Inst. Fourier Grenobles19,1 (1969), 277-304. Zbl0176.09703MR262881
  8. [8] G. Citti, Semilinear Dirichlet problem involving critical exponent for the Kohn Laplacian, pre-print. Zbl0848.35040
  9. [9] R.R. Coifman - G. Weiss, Analyse harmonique sur certaines espaces homogènes, in "Lectures Notes in Math.", 242, Springer Verlag, Berlin-Heidelberg-New York, 1971. Zbl0224.43006MR499948
  10. [10] A. Cutri, "Problemi semilineari ed integro-differenziali per sublaplaciani", PhD Thesis, Università di Roma Tor Vergata, 1997. 
  11. [11] V. De Cicco - M.A. Vivaldi, Liouville tipe theorems for weighted elliptic equations, pre-print MeMoMat, Università Roma - La Sapienza, 1997. 
  12. [12] G.B. Folland, Fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc.79 (1973), 373-376. Zbl0256.35020MR315267
  13. [13] B. Franchi - R.L. Wheeden, Compensation couples and isoperimetric estimates for vector fields, pre-print. 
  14. [14] L. Gallardo, Capacités, mouvement brownien et problème de l'épine de Lebesgue sur les groupes de Lie nilpotents, in "Proc. VII Oberwolfach Conference on Probability Measures on Groups", Lectures Notes in Math., 1981. Zbl0483.60072
  15. [15] N. Garofalo, book to appear. 
  16. [16] N. Garofalo - E. Lanconelli, Existence and non existence results for semilinear equations on the Heisenberg Group, Indiana Univ. Math. Journ.41 (1992), 71-97. Zbl0793.35037MR1160903
  17. [17] D.S. Jerinson - J.M. Lee, The Yamabe problem on CR manifolds, J. Differential Geometry25 (1987), 167-197. Zbl0661.32026MR880182
  18. [18] B. Gaveau, Principe de moindre action, propagation de la chaleur et estimeés sous elliptiques sur certain groupes nilpotents, Acta Math.139 (1977), 95-153. Zbl0366.22010MR461589
  19. [19] B. Gidas - J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math.35 (1981), 525-598. Zbl0465.35003MR615628
  20. [20] B. Gidas - J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Diff. Eq.6, 8 (1981), 883-901. Zbl0462.35041MR619749
  21. [21] R.W. Goodman, NilpotentLie groups: Structures andApplications toAnalysis, in "Lecture Notes in Math." 562, Berlin-Heidelberg -New York, 1976. Zbl0347.22001
  22. [22] G. Hochschild, "The Structure of Lie Groups", Holden-Day Inc., San Francisco, 1965. Zbl0131.02702MR207883
  23. [23] L. Hormander, Hypoelliptic second order differential equations, Acta Math., Uppsala, 119 (1967), 147-171. Zbl0156.10701MR222474
  24. [24] M.R. Lancia - M.V. Marchi, Teoremi di Liouville per operatori di tipo fuchsiano sul gruppo di Heisenberg, pre-print, Dipartimento di Matematica, Università di Roma La Sapienza, 1997. 
  25. [25] E. Lanconelli - F. Uguzzoni, Asymptotic behaviour and non existence theorems for semilinear Dirichlet problems involving critical exponent on unbounded domains of the Heisenberg group, pre-print. Zbl0902.22006
  26. [26] D. Neuenschwander, Probabilities on the Heisenberg group, in "Lecture Notes in Math.", 1630, Springer, 1996. Zbl0870.60007MR1439509
  27. [27] O.A. Oleinik - E.V. Radkevic, "Second Order Equations with Nonnegative Characteristic Form", A.M.S. Providence, Plenum Press, 1973. MR457908
  28. [28] Y. Pinchover, On positive Liouville's theorems and asymptotic behaviour of solutions of Fuchsian elliptic operators, Ann. Inst. Henri Poincaré, Analyse Non Linéaire11 (1994) 313-341. Zbl0837.35010MR1277898
  29. [29] L.P. Rothschild - E.M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math.137 (1976) 247-320. Zbl0346.35030MR436223
  30. [30] C.J. Xu, Semilinear subelliptic equations and Sobolev inequality for vector fields satisfying Hörmander condition, Chinese Journal of Contemporary Mathematics15,2 (1994) 183-192. Zbl0816.35015MR1305697

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.