Ground states of semilinear elliptic equations : a geometric approach

Rodrigo Bamón; Isabel Flores; Manuel del Pino

Annales de l'I.H.P. Analyse non linéaire (2000)

  • Volume: 17, Issue: 5, page 551-581
  • ISSN: 0294-1449

How to cite

top

Bamón, Rodrigo, Flores, Isabel, and del Pino, Manuel. "Ground states of semilinear elliptic equations : a geometric approach." Annales de l'I.H.P. Analyse non linéaire 17.5 (2000): 551-581. <http://eudml.org/doc/78501>.

@article{Bamón2000,
author = {Bamón, Rodrigo, Flores, Isabel, del Pino, Manuel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {existence of positive radial ground states; deep phase-space analysis; Emden-Fowler transformation},
language = {eng},
number = {5},
pages = {551-581},
publisher = {Gauthier-Villars},
title = {Ground states of semilinear elliptic equations : a geometric approach},
url = {http://eudml.org/doc/78501},
volume = {17},
year = {2000},
}

TY - JOUR
AU - Bamón, Rodrigo
AU - Flores, Isabel
AU - del Pino, Manuel
TI - Ground states of semilinear elliptic equations : a geometric approach
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 5
SP - 551
EP - 581
LA - eng
KW - existence of positive radial ground states; deep phase-space analysis; Emden-Fowler transformation
UR - http://eudml.org/doc/78501
ER -

References

top
  1. [1] Clemons C.B., Jones C.K.R.T., A geometric proof of the Kwong-McLeod uniqueness result, SIAM J. Math. Anal.24 (1993) 436-443. Zbl0779.35040MR1205535
  2. [2] Fowler R., Further studies of Emden's and similar differential equations, Quart. J. Math.2 (1931) 259-288. Zbl0003.23502
  3. [3] Guckenheimer J., Holmes P., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983. Zbl0515.34001MR709768
  4. [4] Gidas B., Ni W.-M., Nirenberg L., Symmetry properties of positive solutions of nonlinear elliptic equations in RN, Adv. Math. Studies7A (1981) 369-402. Zbl0469.35052MR634248
  5. [5] Gidas B., Spruck J., Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math.34 (1981) 525-598. Zbl0465.35003MR615628
  6. [6] Gidas B., Caffarelli L., Spruck J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math.42 (3) (1989) 271-297. Zbl0702.35085MR982351
  7. [7] Hirsch M., Pugh C., Schub M., Invariant Manifolds, Lecture Notes in Math., Vol. 583, Springer-Verlag, New York, 1977. Zbl0355.58009MR501173
  8. [8] Johnson R., Pan X., Yi Y., The Melnikov method and elliptic equations with critical exponent, Indiana Univ. Math. J.43 (1994) 1045-1077. Zbl0818.35025MR1305959
  9. [9] Johnson R., Pan X., Yi Y., Positive solutions of super-critical elliptic equations and asymptotics, Comm. Partial Differential Eqnuations18 (1993) 977-1019. Zbl0793.35029MR1218526
  10. [10] Lin C.-S., Ni W.-M., A counterexample to the nodal line conjecture and a related semilinear equation, Proc. Amer. Math.102 (2) (1988) 271-277. Zbl0652.35085MR920985
  11. [11] Smoller J., Shock Waves and Reaction Diffusion Equations, 2nd edn., Springer-Verlag, New York, 1994. Zbl0807.35002MR1301779

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.