Ground states of semilinear elliptic equations : a geometric approach
Rodrigo Bamón; Isabel Flores; Manuel del Pino
Annales de l'I.H.P. Analyse non linéaire (2000)
- Volume: 17, Issue: 5, page 551-581
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBamón, Rodrigo, Flores, Isabel, and del Pino, Manuel. "Ground states of semilinear elliptic equations : a geometric approach." Annales de l'I.H.P. Analyse non linéaire 17.5 (2000): 551-581. <http://eudml.org/doc/78501>.
@article{Bamón2000,
author = {Bamón, Rodrigo, Flores, Isabel, del Pino, Manuel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {existence of positive radial ground states; deep phase-space analysis; Emden-Fowler transformation},
language = {eng},
number = {5},
pages = {551-581},
publisher = {Gauthier-Villars},
title = {Ground states of semilinear elliptic equations : a geometric approach},
url = {http://eudml.org/doc/78501},
volume = {17},
year = {2000},
}
TY - JOUR
AU - Bamón, Rodrigo
AU - Flores, Isabel
AU - del Pino, Manuel
TI - Ground states of semilinear elliptic equations : a geometric approach
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 5
SP - 551
EP - 581
LA - eng
KW - existence of positive radial ground states; deep phase-space analysis; Emden-Fowler transformation
UR - http://eudml.org/doc/78501
ER -
References
top- [1] Clemons C.B., Jones C.K.R.T., A geometric proof of the Kwong-McLeod uniqueness result, SIAM J. Math. Anal.24 (1993) 436-443. Zbl0779.35040MR1205535
- [2] Fowler R., Further studies of Emden's and similar differential equations, Quart. J. Math.2 (1931) 259-288. Zbl0003.23502
- [3] Guckenheimer J., Holmes P., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983. Zbl0515.34001MR709768
- [4] Gidas B., Ni W.-M., Nirenberg L., Symmetry properties of positive solutions of nonlinear elliptic equations in RN, Adv. Math. Studies7A (1981) 369-402. Zbl0469.35052MR634248
- [5] Gidas B., Spruck J., Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math.34 (1981) 525-598. Zbl0465.35003MR615628
- [6] Gidas B., Caffarelli L., Spruck J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math.42 (3) (1989) 271-297. Zbl0702.35085MR982351
- [7] Hirsch M., Pugh C., Schub M., Invariant Manifolds, Lecture Notes in Math., Vol. 583, Springer-Verlag, New York, 1977. Zbl0355.58009MR501173
- [8] Johnson R., Pan X., Yi Y., The Melnikov method and elliptic equations with critical exponent, Indiana Univ. Math. J.43 (1994) 1045-1077. Zbl0818.35025MR1305959
- [9] Johnson R., Pan X., Yi Y., Positive solutions of super-critical elliptic equations and asymptotics, Comm. Partial Differential Eqnuations18 (1993) 977-1019. Zbl0793.35029MR1218526
- [10] Lin C.-S., Ni W.-M., A counterexample to the nodal line conjecture and a related semilinear equation, Proc. Amer. Math.102 (2) (1988) 271-277. Zbl0652.35085MR920985
- [11] Smoller J., Shock Waves and Reaction Diffusion Equations, 2nd edn., Springer-Verlag, New York, 1994. Zbl0807.35002MR1301779
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.