Local calibrations for minimizers of the Mumford–Shah functional with a regular discontinuity set

Maria Giovanna Mora; Massimiliano Morini

Annales de l'I.H.P. Analyse non linéaire (2001)

  • Volume: 18, Issue: 4, page 403-436
  • ISSN: 0294-1449

How to cite

top

Mora, Maria Giovanna, and Morini, Massimiliano. "Local calibrations for minimizers of the Mumford–Shah functional with a regular discontinuity set." Annales de l'I.H.P. Analyse non linéaire 18.4 (2001): 403-436. <http://eudml.org/doc/78526>.

@article{Mora2001,
author = {Mora, Maria Giovanna, Morini, Massimiliano},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {free discontinuity problems; calibrations; Mumford-Shah functional},
language = {eng},
number = {4},
pages = {403-436},
publisher = {Elsevier},
title = {Local calibrations for minimizers of the Mumford–Shah functional with a regular discontinuity set},
url = {http://eudml.org/doc/78526},
volume = {18},
year = {2001},
}

TY - JOUR
AU - Mora, Maria Giovanna
AU - Morini, Massimiliano
TI - Local calibrations for minimizers of the Mumford–Shah functional with a regular discontinuity set
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2001
PB - Elsevier
VL - 18
IS - 4
SP - 403
EP - 436
LA - eng
KW - free discontinuity problems; calibrations; Mumford-Shah functional
UR - http://eudml.org/doc/78526
ER -

References

top
  1. [1] Alberti G, Bouchitté G, Dal Maso G, The calibration method for the Mumford–Shah functional, Preprint SISSA, Trieste, 1998. Zbl0948.49005
  2. [2] Ambrosio L, A compactness theorem for a new class of variational problems, Boll. Un. Mat. It.3-B (1989) 857-881. Zbl0767.49001MR1032614
  3. [3] Ambrosio L, Fusco N, Pallara D, Functions of Bounded Variation and Free-Discontinuity Problems, Oxford University Press, Oxford, 2000. Zbl0957.49001MR1857292
  4. [4] Chavel I, Riemannian Geometry – A Modern Introduction, Cambridge University Press, Cambridge, 1993. Zbl0810.53001
  5. [5] Dal Maso G, Mora M.G, Morini M, Local calibrations for minimizers of the Mumford–Shah functional with rectilinear discontinuity set, J. Math. Pures Appl.79 (2) (2000) 141-162. Zbl0962.49013
  6. [6] Hartman P, Ordinary Differential Equations, Birkhäuser, Boston, 1982. Zbl0476.34002MR658490
  7. [7] John F, Partial Differential Equations, Springer-Verlag, New York, 1982. Zbl0472.35001MR831655
  8. [8] Mumford D, Shah J, Boundary detection by minimizing functionals, I, in: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, 1985. 
  9. [9] Mumford D, Shah J, Optimal approximation by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math.42 (1989) 577-685. Zbl0691.49036MR997568

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.