Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws

Piotr Biler; Grzegorz Karch; Wojbor A Woyczyński

Annales de l'I.H.P. Analyse non linéaire (2001)

  • Volume: 18, Issue: 5, page 613-637
  • ISSN: 0294-1449

How to cite

top

Biler, Piotr, Karch, Grzegorz, and Woyczyński, Wojbor A. "Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws." Annales de l'I.H.P. Analyse non linéaire 18.5 (2001): 613-637. <http://eudml.org/doc/78532>.

@article{Biler2001,
author = {Biler, Piotr, Karch, Grzegorz, Woyczyński, Wojbor A},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {generalized Burgers equation; Lévy diffusion; anomalous diffusion},
language = {eng},
number = {5},
pages = {613-637},
publisher = {Elsevier},
title = {Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws},
url = {http://eudml.org/doc/78532},
volume = {18},
year = {2001},
}

TY - JOUR
AU - Biler, Piotr
AU - Karch, Grzegorz
AU - Woyczyński, Wojbor A
TI - Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2001
PB - Elsevier
VL - 18
IS - 5
SP - 613
EP - 637
LA - eng
KW - generalized Burgers equation; Lévy diffusion; anomalous diffusion
UR - http://eudml.org/doc/78532
ER -

References

top
  1. [1] Bardos C, Penel P, Frisch U, Sulem P.L, Modified dissipativity for a nonlinear evolution equation arising in turbulence, Arch. Rat. Mech. Anal.71 (1979) 237-256. Zbl0421.35037MR531061
  2. [2] Bertoin J, Lévy Processes, Cambridge University Press, 1996. Zbl0861.60003MR1406564
  3. [3] Biler P, Funaki T, Woyczynski W.A, Fractal Burgers equations, J. Differential Equations148 (1998) 9-46. Zbl0911.35100MR1637513
  4. [4] Biler P, Funaki T, Woyczyński W.A, Interacting particle approximation for nonlocal quadratic evolution problems, Prob. Math. Stat.19 (1999) 267-286. Zbl0985.60091MR1750904
  5. [5] Biler P, Karch G, Woyczynski W.A, Asymptotics for multifractal conservation laws, Studia Math.135 (1999) 231-252. Zbl0931.35015MR1708995
  6. [6] Biler P., Karch G., Woyczyński W.A., Asymptotics for conservation laws involving Lévy diffusion generators, preprint. Zbl0990.35023MR1881259
  7. [7] Biler P, Karch G, Woyczyński W.A, Multifractal and Lévy conservation laws, C. R. Acad. Sci. Paris, Sér. I Math.330 (2000) 343-348. Zbl0945.35015MR1751668
  8. [8] Biler P, Woyczyński W.A, Global and exploding solutions for nonlocal quadratic evolution problems, SIAM J. Appl. Math.59 (1999) 845-869. Zbl0940.35035MR1661243
  9. [9] Carpio A, Asymptotic behavior for the vorticity equations in dimensions two and three, Comm. PDE19 (1994) 827-872. Zbl0816.35108MR1274542
  10. [10] Carpio A, Large time behaviour in some convection-diffusion equations, Ann. Sc. Norm. Sup. Pisa, ser. IV,23 (1996) 551-574. Zbl0870.35054MR1440033
  11. [11] Davies E.B, Heat Kernels and Spectral Theory, Cambridge University Press, 1989. Zbl0699.35006MR990239
  12. [12] Duoandikoetxea J, Zuazua E, Moments, masses de Dirac et décomposition de fonctions, C. R. Acad. Sci. Paris, Sér. I Math.315 (1992) 693-698. Zbl0755.45019MR1183805
  13. [13] Duro G, Zuazua E, Large time behavior for convection-diffusion equations in RN with asymptotically constant diffusion, Comm. PDE24 (1999) 1283-1340. Zbl0931.35068MR1697489
  14. [14] Escobedo M, Vázquez J.L, Zuazua E, Asymptotic behaviour and source-type solutions for a diffusion-convection equation, Arch. Rat. Mech. Anal.124 (1993) 43-65. Zbl0807.35059MR1233647
  15. [15] Escobedo M, Vázquez J.L, Zuazua E, A diffusion-convection equation in several space dimensions, Indiana Univ. Math. J.42 (1993) 1413-1440. Zbl0791.35059MR1266100
  16. [16] Escobedo M, Zuazua E, Large time behavior for convection-diffusion equations in RN, J. Funct. Anal.100 (1991) 119-161. Zbl0762.35011MR1124296
  17. [17] Escobedo M, Zuazua E, Long-time behaviour of diffusion waves for a viscous system of conservation laws in RN, Asymptotic Analysis20 (1999) 133-173. Zbl0934.35024MR1700668
  18. [18] Jacob N, Pseudo-Differential Operators and Markov Processes, Akademie Verlag, Berlin, 1996. Zbl0860.60002MR1409607
  19. [19] Karch G, Self-similar large time behavior of solutions to Korteweg–de Vries–Burgers equation, Nonlinear Analysis35 (1999) 199-219. Zbl0923.35158
  20. [20] Komatsu T, Uniform estimates for fundamental solutions associated with non-local Dirichlet forms, Osaka J. Math.32 (1995) 833-860. Zbl0867.35123MR1380729
  21. [21] Ladyženskaja O.A, Solonnikov V.A, Ural'ceva N.N, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc, Providence, RI, 1988. MR241822
  22. [22] Mann J.A, Woyczynski W.A, Growing fractal interfaces in the presence of self-similar hopping surface diffusion, Physica A291 (2001) 159-183. Zbl0972.82078
  23. [23] Pȩkalski A, Sznajd-Weron K (Eds.), Anomalous Diffusion. From Basics to Applications, Lecture Notes in Physics, 519, Springer-Verlag, Berlin, 1999. Zbl0909.00059
  24. [24] Shlesinger M.F, Zaslavsky G.M, Frisch U (Eds.), Lévy Flights and Related Topics in Physics, Lecture Notes in Physics, 450, Springer-Verlag, Berlin, 1995. Zbl0823.00016MR1381481
  25. [25] Simon J, Compact sets in the space Lp(0,T;B), Annali Mat. Pura Appl.156 (1987) 65-96. Zbl0629.46031MR916688
  26. [26] Stroock D.W, Diffusion processes associated with Lévy generators, Z. Wahr. verw. Geb.32 (1975) 209-244. Zbl0292.60122MR433614
  27. [27] Woyczynski W.A, Burgers–KPZ Turbulence – Göttingen Lectures, Lecture Notes in Math., 1700, Springer-Verlag, Berlin, 1998. Zbl0919.60004
  28. [28] Zuazua E, Weakly nonlinear large time behavior in scalar convection-diffusion equations, Differential Integral Equations6 (1993) 1481-1491. Zbl0805.35054MR1235206

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.