On the regularity of the blow-up set for semilinear heat equations
Annales de l'I.H.P. Analyse non linéaire (2002)
- Volume: 19, Issue: 5, page 505-542
- ISSN: 0294-1449
Access Full Article
topHow to cite
topZaag, Hatem. "On the regularity of the blow-up set for semilinear heat equations." Annales de l'I.H.P. Analyse non linéaire 19.5 (2002): 505-542. <http://eudml.org/doc/78553>.
@article{Zaag2002,
author = {Zaag, Hatem},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nondegeneracy condition},
language = {eng},
number = {5},
pages = {505-542},
publisher = {Elsevier},
title = {On the regularity of the blow-up set for semilinear heat equations},
url = {http://eudml.org/doc/78553},
volume = {19},
year = {2002},
}
TY - JOUR
AU - Zaag, Hatem
TI - On the regularity of the blow-up set for semilinear heat equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 5
SP - 505
EP - 542
LA - eng
KW - nondegeneracy condition
UR - http://eudml.org/doc/78553
ER -
References
top- [1] Ball J.M., Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford (Ser. 2)28 (112) (1977) 473-486. Zbl0377.35037MR473484
- [2] Bernoff A.J., Bertozzi A.L., Witelski T.P., Axisymmetric surface diffusion: dynamics and stability of self-similar pinchoff, J. Statist. Phys.93 (3–4) (1998) 725-776. Zbl0951.74007MR1666581
- [3] M.D. Betterton, M.P. Brenner, Collapsing bacterial cylinders, Preprint.
- [4] Brenner M.P., Constantin P., Kadanoff L.P., Schenkel A., Venkataramani S.C., Diffusion, attraction and collapse, Nonlinearity12 (4) (1999) 1071-1098. Zbl0942.35018MR1709861
- [5] Bricmont J., Kupiainen A., Universality in blow-up for nonlinear heat equations, Nonlinearity7 (2) (1994) 539-575. Zbl0857.35018MR1267701
- [6] Chapman S.J., Hunton B.J., Ockendon J.R., Vortices and boundaries, Quart. Appl. Math.56 (3) (1998) 507-519. Zbl0958.76014MR1637052
- [7] Deng K., Levine H.A., The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl. (2000). Zbl0942.35025MR1742850
- [8] Fermanian Kammerer C., Merle F., Zaag H., Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view, Math. Annalen317 (2) (2000) 195-237. Zbl0971.35038MR1764243
- [9] Fermanian Kammerer C., Zaag H., Boundedness up to blow-up of the difference between two solutions to a semilinear heat equation, Nonlinearity13 (4) (2000) 1189-1216. Zbl0954.35085MR1767954
- [10] Filippas S., Kohn R.V., Refined asymptotics for the blowup of ut−Δu=up, Comm. Pure Appl. Math.45 (7) (1992) 821-869. Zbl0784.35010
- [11] Filippas S., Liu W.X., On the blowup of multidimensional semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire10 (3) (1993) 313-344. Zbl0815.35039MR1230711
- [12] Fujita H., On the blowing up of solutions of the Cauchy problem for ut=Δu+u1+α, J. Fac. Sci. Univ. Tokyo Sect. I13 (1966) 109-124. Zbl0163.34002
- [13] Giga Y., Kohn R.V., Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math.42 (6) (1989) 845-884. Zbl0703.35020MR1003437
- [14] Herrero M.A., Velázquez J.J.L., Blow-up behaviour of one-dimensional semilinear parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire10 (2) (1993) 131-189. Zbl0813.35007MR1220032
- [15] Kato T., Perturbation Theory for Linear Operators, Springer, Berlin, 1995, Reprint of the 1980 edition. Zbl0836.47009MR1335452
- [16] Levine H.A., Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put=−Au+F(u), Arch. Rational Mech. Anal.51 (1973) 371-386. Zbl0278.35052
- [17] Merle F., Solution of a nonlinear heat equation with arbitrarily given blow-up points, Comm. Pure Appl. Math.45 (3) (1992) 263-300. Zbl0785.35012MR1151268
- [18] Merle F., Zaag H., Reconnection of vortex with the boundary and finite time quenching, Nonlinearity10 (6) (1997) 1497-1550. Zbl0910.35020MR1483553
- [19] Merle F., Zaag H., Stability of the blow-up profile for equations of the type ut=Δu+|u|p−1u, Duke Math. J.86 (1) (1997) 143-195. Zbl0872.35049
- [20] Merle F., Zaag H., Optimal estimates for blowup rate and behavior for nonlinear heat equations, Comm. Pure Appl. Math.51 (2) (1998) 139-196. Zbl0899.35044MR1488298
- [21] Merle F., Zaag H., A Liouville theorem for vector-valued nonlinear heat equations and applications, Math. Annalen316 (1) (2000) 103-137. Zbl0939.35086MR1735081
- [22] F. Oustry, M.L. Overton, Variational analysis of the total projection for symmetric matrices, 2000.
- [23] Soner H.M., Souganidis P.E., Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature, Comm. Partial Differential Equations18 (5–6) (1993) 859-894. Zbl0804.53006MR1218522
- [24] Velázquez J.J.L., Higher-dimensional blow up for semilinear parabolic equations, Comm. Partial Differential Equations17 (9–10) (1992) 1567-1596. Zbl0813.35009MR1187622
- [25] Velázquez J.J.L., Classification of singularities for blowing up solutions in higher dimensions, Trans. Amer. Math. Soc.338 (1) (1993) 441-464. Zbl0803.35015MR1134760
- [26] Velázquez J.J.L., Estimates on the (n−1)-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation, Indiana Univ. Math. J.42 (2) (1993) 445-476. Zbl0802.35073
- [27] H. Zaag, One-dimensional behavior of singular N-dimensional solutions of semilinear heat equations, Preprint, 2001. MR1888872
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.