Regular self-similar solutions of the nonlinear heat equation with initial data above the singular steady state

Philippe Souplet; Fred B Weissler

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 2, page 213-235
  • ISSN: 0294-1449

How to cite

top

Souplet, Philippe, and Weissler, Fred B. "Regular self-similar solutions of the nonlinear heat equation with initial data above the singular steady state." Annales de l'I.H.P. Analyse non linéaire 20.2 (2003): 213-235. <http://eudml.org/doc/78577>.

@article{Souplet2003,
author = {Souplet, Philippe, Weissler, Fred B},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {profile equation; existence, uniqueness and asymptotic behavior},
language = {eng},
number = {2},
pages = {213-235},
publisher = {Elsevier},
title = {Regular self-similar solutions of the nonlinear heat equation with initial data above the singular steady state},
url = {http://eudml.org/doc/78577},
volume = {20},
year = {2003},
}

TY - JOUR
AU - Souplet, Philippe
AU - Weissler, Fred B
TI - Regular self-similar solutions of the nonlinear heat equation with initial data above the singular steady state
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 2
SP - 213
EP - 235
LA - eng
KW - profile equation; existence, uniqueness and asymptotic behavior
UR - http://eudml.org/doc/78577
ER -

References

top
  1. [1] Cazenave T., Weissler F.B., Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations, Math. Z.228 (1998) 83-120. Zbl0916.35109MR1617975
  2. [2] Dohmen C., Hirose M., Structure of positive radial solutions to the Haraux–Weissler equation, Nonlinear Anal. TMA33 (1998) 51-69. Zbl0934.34028MR1623045
  3. [3] Galaktionov V.A., Vazquez J.L., Continuation of blowup solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math.50 (1997) 1-67. Zbl0874.35057MR1423231
  4. [4] Haraux A., Weissler F.B., Non-uniqueness for a semilinear initial value problem, Indiana Univ. Math. J.31 (1982) 167-189. Zbl0465.35049MR648169
  5. [5] Joseph D.D., Lundgren T.S., Quasilinear Dirichlet problems driven by positive sources, Arch. Rat. Mech. Anal.49 (1973) 241-269. Zbl0266.34021MR340701
  6. [6] Peletier L.A., Terman D., Weissler F.B., On the equation Δu+1/2, Arch. Rat. Mech. Anal.94 (1986) 83-99. Zbl0615.35034
  7. [7] Vazquez J.L., Domain of existence and blowup for the exponential reaction-diffusion equation, Indiana Univ. Math. J.48 (1999) 677-709. Zbl0928.35080MR1722813
  8. [8] Weissler F.B., Asymptotic analysis of an ordinary differential equation and non-uniqueness for a semilinear partial differential equation, Arch. Rat. Mech. Anal.91 (1986) 231-245. Zbl0614.35043MR806003
  9. [9] Weissler F.B., Lp-energy and blow-up for a semilinear heat equation, Proc. Symp. Pure Math. Part II45 (1986) 545-551. Zbl0631.35049MR843641
  10. [10] Yanagida E., Uniqueness of rapidly decaying solutions of the Haraux–Weissler equation, J. Differential Equations127 (1996) 561-570. Zbl0856.34058MR1389410

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.