Regularity results for parabolic systems related to a class of non-newtonian fluids
E Acerbi; G Mingione; G. A. Seregin
Annales de l'I.H.P. Analyse non linéaire (2004)
- Volume: 21, Issue: 1, page 25-60
- ISSN: 0294-1449
Access Full Article
topHow to cite
topAcerbi, E, Mingione, G, and Seregin, G. A.. "Regularity results for parabolic systems related to a class of non-newtonian fluids." Annales de l'I.H.P. Analyse non linéaire 21.1 (2004): 25-60. <http://eudml.org/doc/78611>.
@article{Acerbi2004,
author = {Acerbi, E, Mingione, G, Seregin, G. A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {weak solution; electrorheological fluids; parabolic Hausdorff measure; non-standard growth},
language = {eng},
number = {1},
pages = {25-60},
publisher = {Elsevier},
title = {Regularity results for parabolic systems related to a class of non-newtonian fluids},
url = {http://eudml.org/doc/78611},
volume = {21},
year = {2004},
}
TY - JOUR
AU - Acerbi, E
AU - Mingione, G
AU - Seregin, G. A.
TI - Regularity results for parabolic systems related to a class of non-newtonian fluids
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 1
SP - 25
EP - 60
LA - eng
KW - weak solution; electrorheological fluids; parabolic Hausdorff measure; non-standard growth
UR - http://eudml.org/doc/78611
ER -
References
top- [1] Acerbi E., Mingione G., Regularity results for a class of functionals with nonstandard growth, Arch. Rational Mech. Anal.156 (2001) 121-140. Zbl0984.49020MR1814973
- [2] Acerbi E., Mingione G., Regularity results for electrorheological fluids: the stationary case, C. R. Acad. Sci. Paris Ser. I334 (2002) 817-822. Zbl1017.76098MR1905047
- [3] Acerbi E., Mingione G., Regularity results for stationary electro-rheological fluids, Arch. Rational Mech. Anal.164 (2002) 213-259. Zbl1038.76058MR1930392
- [4] Bildhauer M., Fuchs M., Partial regularity for variational integrals with (s,μ,q)-growth, Calc. Var. Partial Differential Equations13 (2001) 537-560. Zbl1018.49026
- [5] M. Bildhauer, M. Fuchs, Variants of the Stokes problem: the case of anisotropic potentials J. Math. Fluid Mechanics, submitted for publication. Zbl1072.76019MR2004292
- [6] Caffarelli L., Kohn R.V., Nirenberg L., Partial regularity of suitable weak solutions of the Navier–Stokes equations, Comm. Pure Appl. Math.35 (1982) 771-831. Zbl0509.35067MR673830
- [7] Campanato S., On the nonlinear parabolic systems in divergence form. Hölder continuity and partial Hölder continuity of the solutions, Ann. Mat. Pura Appl. (4)137 (1984) 83-122. Zbl0704.35024MR772253
- [8] Coscia A., Mingione G., Hölder continuity of the gradient of p(x)-harmonic mappings, C. R. Acad. Sci. Paris Ser. I328 (1999) 363-368. Zbl0920.49020MR1675954
- [9] L. Diening, Theoretical and numerical results for electrorheological fluids, Ph.D. Thesis, University of Freiburg, 2002. Zbl1022.76001
- [10] L. Esposito, F. Leonetti, G. Mingione, Sharp regularity for functionals with (p,q) growth, J. Differential Equations, in press. Zbl1072.49024MR2076158
- [11] Frehse J., Seregin G.A., Full regularity for a class of degenerated parabolic systems in two spatial variables, Manuscripta Math.99 (1999) 517-539. Zbl0931.35029MR1713807
- [12] Frehse J., Seregin G.A., Regularity of solutions to variational problems of the deformation theory of plasticity with logarithmic hardening, Amer. Math. Soc. Transl. Ser.2 (1999) 193. Zbl0973.74033MR1736908
- [13] Fuchs M., Seregin G.A., Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids, Lecture Notes in Math., vol. 1749, Springer, Berlin, 2000. Zbl0964.76003MR1810507
- [14] Fuchs M., Seregin G.A., Variational methods for fluids of Prandtl–Eyring type and plastic materials with logarithmic hardening, Math. Methods Appl. Sci.22 (1999) 317-351. Zbl0928.76087MR1671448
- [15] Giaquinta M., Growth conditions and regularity, a counterexample, Manuscripta Math.59 (1987) 245-248. Zbl0638.49005MR905200
- [16] Giusti E., Direct Methods in the Calculus of Variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. Zbl1028.49001MR1962933
- [17] Ladyzhenskaya O.A., On nonlinear problems of continuum mechanics, in: Proc. Internat. Congr. Math. (Moscow 1966), Nauka, Moscow, 1968, pp. 560-573, English translation in: , Amer. Math. Soc. Translation (2)70 (1968). Zbl0194.41701
- [18] Ladyzhenskaya O.A., New equations for description of motion of viscous incompressible fluids and global solvability of boundary value problems for them, Proc. Steklov Inst. Math.102 (1967). Zbl0202.37802
- [19] Ladyzhenskaya O.A., On some modifications of the Navier–Stokes equations for large gradient of velocity, Zap. Nauchn. Sem. Leningrad Odtel. Mat. Inst. Steklov (LOMI)7 (1968) 126-154, English translation in: , Sem. Math. V.A. Steklov Math. Inst. Leningrad7 (1968). Zbl0195.10602MR241832
- [20] Ladyzhenskaya O.A., Seregin G.A., On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations, J. Math. Fluid Mech.1 (1999) 356-387. Zbl0954.35129MR1738171
- [21] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23, American Mathematical Society, 1967. MR241822
- [22] Lieberman G.M., Gradient estimates for a new class of degenerate elliptic and parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)21 (1994) 497-522. Zbl0839.35018MR1318770
- [23] Lions J.-L., Quelques methodes de resolution des problemes aux limites non lineaires, Gauthier-Villars, Paris, 1969. Zbl0189.40603MR259693
- [24] P. Marcellini, Un exemple de solution discontinue d' un probléme variationnel dans le cas scalaire, Preprint Dip. Mat. “U. Dini”, Univ. Firenze, 1987.
- [25] Marcellini P., Regularity and existence of solutions of elliptic equations with p,q-growth conditions, J. Differential Equations90 (1991) 1-30. Zbl0724.35043MR1094446
- [26] Mingione G., The singular set of solutions to non-differentiable elliptic systems, Arch. Rational Mech. Anal.166 (2003) 287-301. Zbl1142.35391MR1961442
- [27] Malek J., Necas J., Růžička M., On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case p≥2, Adv. Differential Equations6 (2001) 257-302. Zbl1021.35085
- [28] Malek J., Necas J., Rokyta M., Růžička M., Weak and Measure-Valued Solutions to Evolutionary PDEs, Appl. Math. Math. Comp., vol. 13, Chapman-Hall, London, 1996. Zbl0851.35002MR1409366
- [29] Rajagopal K.R., Wineman A.S., Flow of electrorheological materials, Acta Mech.91 (1992) 57-75. Zbl0746.76095MR1140999
- [30] Rajagopal K.R., Růžička M., Mathematical modeling of electrorheological materials, Contin. Mech. Thermodyn.13 (2001) 59-78. Zbl0971.76100
- [31] Růžička M., Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., vol. 1748, Springer, Berlin, 2000. Zbl0962.76001MR1810360
- [32] Růžička M., Flow of shear dependent electrorheological fluids, C. R. Acad. Sci. Paris Ser. I Math.329 (1999) 393-398. Zbl0954.76097MR1710119
- [33] Seregin G.A., Interior regularity for solutions to the modified Navier–Stokes equations, J. Math. Fluid Mech.1 (1999) 235-281. Zbl0961.35106MR1738752
- [34] Seregin G.A., On the number of singular points of weak solutions to the Navier–Stokes equations, Comm. Pure Appl. Math.54 (2001) 1019-1028. Zbl1030.35133MR1829531
- [35] Seregin G.A., Sverak V., Navier–Stokes equations with lower bounds on the pressure, Arch. Rational Mech. Anal.163 (2002) 65-86. Zbl1002.35094MR1905137
- [36] Temam R., Navier–Stokes equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, vol. 2, North-Holland, Amsterdam, 1984. Zbl0568.35002MR609732
- [37] Zhikov V.V., Meyers type estimates for solving the nonlinear Stokes system, Differential Equations33 (1997) 107-114. Zbl0911.35089MR1607245
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.