Regularity results for parabolic systems related to a class of non-newtonian fluids

E Acerbi; G Mingione; G. A. Seregin

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 1, page 25-60
  • ISSN: 0294-1449

How to cite

top

Acerbi, E, Mingione, G, and Seregin, G. A.. "Regularity results for parabolic systems related to a class of non-newtonian fluids." Annales de l'I.H.P. Analyse non linéaire 21.1 (2004): 25-60. <http://eudml.org/doc/78611>.

@article{Acerbi2004,
author = {Acerbi, E, Mingione, G, Seregin, G. A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {weak solution; electrorheological fluids; parabolic Hausdorff measure; non-standard growth},
language = {eng},
number = {1},
pages = {25-60},
publisher = {Elsevier},
title = {Regularity results for parabolic systems related to a class of non-newtonian fluids},
url = {http://eudml.org/doc/78611},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Acerbi, E
AU - Mingione, G
AU - Seregin, G. A.
TI - Regularity results for parabolic systems related to a class of non-newtonian fluids
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 1
SP - 25
EP - 60
LA - eng
KW - weak solution; electrorheological fluids; parabolic Hausdorff measure; non-standard growth
UR - http://eudml.org/doc/78611
ER -

References

top
  1. [1] Acerbi E., Mingione G., Regularity results for a class of functionals with nonstandard growth, Arch. Rational Mech. Anal.156 (2001) 121-140. Zbl0984.49020MR1814973
  2. [2] Acerbi E., Mingione G., Regularity results for electrorheological fluids: the stationary case, C. R. Acad. Sci. Paris Ser. I334 (2002) 817-822. Zbl1017.76098MR1905047
  3. [3] Acerbi E., Mingione G., Regularity results for stationary electro-rheological fluids, Arch. Rational Mech. Anal.164 (2002) 213-259. Zbl1038.76058MR1930392
  4. [4] Bildhauer M., Fuchs M., Partial regularity for variational integrals with (s,μ,q)-growth, Calc. Var. Partial Differential Equations13 (2001) 537-560. Zbl1018.49026
  5. [5] M. Bildhauer, M. Fuchs, Variants of the Stokes problem: the case of anisotropic potentials J. Math. Fluid Mechanics, submitted for publication. Zbl1072.76019MR2004292
  6. [6] Caffarelli L., Kohn R.V., Nirenberg L., Partial regularity of suitable weak solutions of the Navier–Stokes equations, Comm. Pure Appl. Math.35 (1982) 771-831. Zbl0509.35067MR673830
  7. [7] Campanato S., On the nonlinear parabolic systems in divergence form. Hölder continuity and partial Hölder continuity of the solutions, Ann. Mat. Pura Appl. (4)137 (1984) 83-122. Zbl0704.35024MR772253
  8. [8] Coscia A., Mingione G., Hölder continuity of the gradient of p(x)-harmonic mappings, C. R. Acad. Sci. Paris Ser. I328 (1999) 363-368. Zbl0920.49020MR1675954
  9. [9] L. Diening, Theoretical and numerical results for electrorheological fluids, Ph.D. Thesis, University of Freiburg, 2002. Zbl1022.76001
  10. [10] L. Esposito, F. Leonetti, G. Mingione, Sharp regularity for functionals with (p,q) growth, J. Differential Equations, in press. Zbl1072.49024MR2076158
  11. [11] Frehse J., Seregin G.A., Full regularity for a class of degenerated parabolic systems in two spatial variables, Manuscripta Math.99 (1999) 517-539. Zbl0931.35029MR1713807
  12. [12] Frehse J., Seregin G.A., Regularity of solutions to variational problems of the deformation theory of plasticity with logarithmic hardening, Amer. Math. Soc. Transl. Ser.2 (1999) 193. Zbl0973.74033MR1736908
  13. [13] Fuchs M., Seregin G.A., Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids, Lecture Notes in Math., vol. 1749, Springer, Berlin, 2000. Zbl0964.76003MR1810507
  14. [14] Fuchs M., Seregin G.A., Variational methods for fluids of Prandtl–Eyring type and plastic materials with logarithmic hardening, Math. Methods Appl. Sci.22 (1999) 317-351. Zbl0928.76087MR1671448
  15. [15] Giaquinta M., Growth conditions and regularity, a counterexample, Manuscripta Math.59 (1987) 245-248. Zbl0638.49005MR905200
  16. [16] Giusti E., Direct Methods in the Calculus of Variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. Zbl1028.49001MR1962933
  17. [17] Ladyzhenskaya O.A., On nonlinear problems of continuum mechanics, in: Proc. Internat. Congr. Math. (Moscow 1966), Nauka, Moscow, 1968, pp. 560-573, English translation in: , Amer. Math. Soc. Translation (2)70 (1968). Zbl0194.41701
  18. [18] Ladyzhenskaya O.A., New equations for description of motion of viscous incompressible fluids and global solvability of boundary value problems for them, Proc. Steklov Inst. Math.102 (1967). Zbl0202.37802
  19. [19] Ladyzhenskaya O.A., On some modifications of the Navier–Stokes equations for large gradient of velocity, Zap. Nauchn. Sem. Leningrad Odtel. Mat. Inst. Steklov (LOMI)7 (1968) 126-154, English translation in: , Sem. Math. V.A. Steklov Math. Inst. Leningrad7 (1968). Zbl0195.10602MR241832
  20. [20] Ladyzhenskaya O.A., Seregin G.A., On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations, J. Math. Fluid Mech.1 (1999) 356-387. Zbl0954.35129MR1738171
  21. [21] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23, American Mathematical Society, 1967. MR241822
  22. [22] Lieberman G.M., Gradient estimates for a new class of degenerate elliptic and parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)21 (1994) 497-522. Zbl0839.35018MR1318770
  23. [23] Lions J.-L., Quelques methodes de resolution des problemes aux limites non lineaires, Gauthier-Villars, Paris, 1969. Zbl0189.40603MR259693
  24. [24] P. Marcellini, Un exemple de solution discontinue d' un probléme variationnel dans le cas scalaire, Preprint Dip. Mat. “U. Dini”, Univ. Firenze, 1987. 
  25. [25] Marcellini P., Regularity and existence of solutions of elliptic equations with p,q-growth conditions, J. Differential Equations90 (1991) 1-30. Zbl0724.35043MR1094446
  26. [26] Mingione G., The singular set of solutions to non-differentiable elliptic systems, Arch. Rational Mech. Anal.166 (2003) 287-301. Zbl1142.35391MR1961442
  27. [27] Malek J., Necas J., Růžička M., On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case p≥2, Adv. Differential Equations6 (2001) 257-302. Zbl1021.35085
  28. [28] Malek J., Necas J., Rokyta M., Růžička M., Weak and Measure-Valued Solutions to Evolutionary PDEs, Appl. Math. Math. Comp., vol. 13, Chapman-Hall, London, 1996. Zbl0851.35002MR1409366
  29. [29] Rajagopal K.R., Wineman A.S., Flow of electrorheological materials, Acta Mech.91 (1992) 57-75. Zbl0746.76095MR1140999
  30. [30] Rajagopal K.R., Růžička M., Mathematical modeling of electrorheological materials, Contin. Mech. Thermodyn.13 (2001) 59-78. Zbl0971.76100
  31. [31] Růžička M., Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., vol. 1748, Springer, Berlin, 2000. Zbl0962.76001MR1810360
  32. [32] Růžička M., Flow of shear dependent electrorheological fluids, C. R. Acad. Sci. Paris Ser. I Math.329 (1999) 393-398. Zbl0954.76097MR1710119
  33. [33] Seregin G.A., Interior regularity for solutions to the modified Navier–Stokes equations, J. Math. Fluid Mech.1 (1999) 235-281. Zbl0961.35106MR1738752
  34. [34] Seregin G.A., On the number of singular points of weak solutions to the Navier–Stokes equations, Comm. Pure Appl. Math.54 (2001) 1019-1028. Zbl1030.35133MR1829531
  35. [35] Seregin G.A., Sverak V., Navier–Stokes equations with lower bounds on the pressure, Arch. Rational Mech. Anal.163 (2002) 65-86. Zbl1002.35094MR1905137
  36. [36] Temam R., Navier–Stokes equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, vol. 2, North-Holland, Amsterdam, 1984. Zbl0568.35002MR609732
  37. [37] Zhikov V.V., Meyers type estimates for solving the nonlinear Stokes system, Differential Equations33 (1997) 107-114. Zbl0911.35089MR1607245

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.