Harnack type estimates for nonlinear elliptic systems and applications
Annales de l'I.H.P. Analyse non linéaire (2004)
- Volume: 21, Issue: 5, page 543-590
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBusca, Jérôme, and Sirakov, Boyan. "Harnack type estimates for nonlinear elliptic systems and applications." Annales de l'I.H.P. Analyse non linéaire 21.5 (2004): 543-590. <http://eudml.org/doc/78630>.
@article{Busca2004,
author = {Busca, Jérôme, Sirakov, Boyan},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {5},
pages = {543-590},
publisher = {Elsevier},
title = {Harnack type estimates for nonlinear elliptic systems and applications},
url = {http://eudml.org/doc/78630},
volume = {21},
year = {2004},
}
TY - JOUR
AU - Busca, Jérôme
AU - Sirakov, Boyan
TI - Harnack type estimates for nonlinear elliptic systems and applications
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 5
SP - 543
EP - 590
LA - eng
UR - http://eudml.org/doc/78630
ER -
References
top- [1] Arapostathis A., Ghosh M., Marcus St., Harnack's inequality for cooperative weakly coupled elliptic systems, Comm. Partial Differential Equations24 (9–10) (1999) 1555-1571. Zbl0934.35039MR1708101
- [2] Berestycki H., Nirenberg L., Varadhan S.R.S., The principal eigenvalue and maximum principle for second order elliptic operators in general domains, Comm. Pure Appl. Math.47 (1) (1994) 47-92. Zbl0806.35129MR1258192
- [3] Birindelli I., Mitidieri E., Sweers G., Existence of the principal eigenfunction for cooperative elliptic systems in a general domain, Differential Equations (Differentsial'nye Uravneniya)35 (3) (1999), (in Russian). Zbl0940.35147MR1726799
- [4] Bladt M., A Markov modulated financial model, J. Comm. Statist.: Stoch. Models14 (1998) 225-240. Zbl0934.60061MR1617564
- [5] M. Bladt, P. Padilla, Nonlinear financial models: finite Markov modulation and limits, Preprint.
- [6] Busca J., Existence results for Bellman equations and maximum principles in unbounded domains, Comm. Partial Differential Equations24 (11–12) (1999) 2023-2042. Zbl0961.35021MR1720774
- [7] Caffarelli L.A., Interior estimates for fully nonlinear elliptic equations, Ann. of Math.130 (1989) 189-213. Zbl0692.35017MR1005611
- [8] Caffarelli L.A., Cabre X., Fully Nonlinear Elliptic Equations, Amer. Math. Soc. Collog. Publ., vol. 43, American Mathematical Society, Providence, RI, 1995. Zbl0834.35002MR1351007
- [9] Caffarelli L.A., Crandall M.G., Kocan M., Świech A., On viscosity solutions of fully nonlinear equations with measurable ingredients, Comm. Pure Appl. Math49 (1996) 365-397. Zbl0854.35032MR1376656
- [10] Chen Z.Q., Zhao Z., Harnack principle for weakly coupled elliptic systems, J. Differential Equations39 (1997) 261-282. Zbl0882.35039MR1472349
- [11] Chen Z.Q., Zhao Z., Potential theory for elliptic systems, Ann. Probab.24 (1) (1996) 293-319. Zbl0854.60062MR1387637
- [12] Crandall M.G., Ishii H., Lions P.-L., User's guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc.27 (1) (1992) 1-67. Zbl0755.35015MR1118699
- [13] Crandall M.G., Kocan M., Świech A., Lp theory for fully nonlinear uniformly parabolic equations, Comm. Partial Differential Equations25 (11&12) (2000) 1997-2053. Zbl0973.35097MR1789919
- [14] de Figueiredo D.G., Monotonicity and symmetry of solutions of elliptic systems in general domains, Nonlinear Differential Equations Appl.1 (1994) 119-123. Zbl0822.35039MR1273345
- [15] de Figueiredo D.G., Mitidieri E., Maximum principles for linear elliptic systems, Rend. Inst. Mat. Univ. Trieste (1992) 36-66. Zbl0793.35011MR1210477
- [16] de Figueiredo D.G., Mitidieri E., Maximum principles for cooperative elliptic systems, C. R. Acad. Sci. Paris, Ser. I310 (2) (1990) 49-52. Zbl0712.35021MR1044413
- [17] de Giorgi E., Un esempio di estremali discontinue per un problema variazionale di tipo elliptico, Boll. Un. Mat. Ital.1 (4) (1968) 135-137. Zbl0155.17603MR227827
- [18] Duffin R.J., Nehari Z., Note on polyharmonic functions, Proc. Amer. Math. Soc.12 (1961) 110-115. Zbl0097.08504MR141793
- [19] Friedman A., On n-metaharmonic functions and harmonic functions of infinite order, Proc. Amer. Math. Soc.8 (1957) 223-229. Zbl0077.30304MR85430
- [20] Ghermanescu M., Sur les valeurs moyennes des fonctions, Math. Ann.119 (1944) 288-320. Zbl0063.01603MR11489
- [21] Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Ann. Math. Stud., vol. 105, Princeton University Press, 1983. Zbl0516.49003MR717034
- [22] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1998. Zbl0562.35001
- [23] Grunau H., Sweers G., Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions, Math. Ann.307 (1997) 589. Zbl0892.35031MR1464133
- [24] Grunau H., Sweers G., Classical solutions for some higher order semilinear elliptic equations under weak growth conditions, Nonlinear Anal.28 (1997) 799-807. Zbl0867.35031MR1422185
- [25] Hess P., On the eigenvalue problem for weakly coupled elliptic systems, Arch. Rational Mech. Anal.81 (2) (1983) 151-159. Zbl0509.35029MR682266
- [26] Hildebrandt S., Widman K.-O., On the Hölder continuity of weak solutions of quasilinear elliptic systems of second order, Ann. Sc. Norm. Sup. Pisa Cl. Sci.4 (1) (1977) 145-178. Zbl0353.35013MR457936
- [27] Ishii H., Koike S., Viscosity solutions for monotone systems of second-order elliptic PDE's, Comm. Partial Differential Equations16 (6 & 7) (1991) 1095-1128. Zbl0742.35022MR1116855
- [28] Jensen R., The maximum principle for viscosity solutions of fully nonlinear seoncd order partial differential equations, Arch. Rational Mech. Anal.101 (1988) 1-27. Zbl0708.35019MR920674
- [29] Jensen R., Lions P.L., Souganidis P.E., A uniqueness result for viscosity solutions of fully nonlinear second order partial differential equations, Proc. Amer. Math. Soc.4 (1988) 975-978. Zbl0662.35048MR934877
- [30] Krylov, Nonlinear Elliptic and Parabolic Equations of Second Order, Coll. Math. Appl., 1987. Zbl0619.35004MR934313
- [31] Lasry J.-M., Lions P.-L., Large deviations for diffusion process coupled by a jump process, C. R. Acad. Sci. Paris, Sér. I321 (1995) 849-854. Zbl0837.60026MR1355840
- [32] Lenhart S.M., Belbas S.A., A system of nonlinear PDE's arising in the optimal control of stochastic systems, SIAM J. Appl. Math.43 (1983) 465-475. Zbl0511.93077MR700525
- [33] Mandras, Diseguanza di Harnack per sistemi elliptici debolmente accopiati, Boll. Un. Mat. Ital. A14 (5) (1977) 313-332. Zbl0357.35003MR499700
- [34] Murray J.D., Mathematical Biology, Springer-Verlag, 1993. Zbl0682.92001MR1239892
- [35] Muscalu C., On the Harnack principle for strongly elliptic systems with nonsmooth coefficients, Comm. Pure Appl. Math.52 (1999) 1213-1230. Zbl0949.35046MR1699966
- [36] Nicolescu M., Les fonctions polyharmoniques, Hermann & Cie, Paris, 1936. Zbl0015.15905
- [37] Ovčarenko I.E., On multiply superharmonic functions, Uspekhi Math. Nauk16 (3) (1961) 197-200, (in Russian). Zbl0128.09901MR130389
- [38] Serrin J., Local behaviour of solutions of quasilinear equations, Acta Math.111 (1964) 247-302. Zbl0128.09101MR170096
- [39] Smyrnelis E.P., Une propriété de moyenne des fonctions biharmoniques, Bull. Sci. Math. (2)109 (1985) 103-111. Zbl0566.31004MR802527
- [40] Sweers G., Strong positivity in C() for elliptic systems, Math. Z.209 (1992) 251-271. Zbl0727.35045
- [41] Wang L., On the regularity theory of fully nonlinear parabolic equations: I, Comm. Pure Appl. Math.45 (1) (1992) 27-76. Zbl0832.35025MR1135923
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.