Mappings of finite distortion : discreteness and openness for quasi-light mappings

Stanislav Hencl; Pekka Koskela

Annales de l'I.H.P. Analyse non linéaire (2005)

  • Volume: 22, Issue: 3, page 331-342
  • ISSN: 0294-1449

How to cite

top

Hencl, Stanislav, and Koskela, Pekka. "Mappings of finite distortion : discreteness and openness for quasi-light mappings." Annales de l'I.H.P. Analyse non linéaire 22.3 (2005): 331-342. <http://eudml.org/doc/78659>.

@article{Hencl2005,
author = {Hencl, Stanislav, Koskela, Pekka},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {discrete and open maps; finite distortion},
language = {eng},
number = {3},
pages = {331-342},
publisher = {Elsevier},
title = {Mappings of finite distortion : discreteness and openness for quasi-light mappings},
url = {http://eudml.org/doc/78659},
volume = {22},
year = {2005},
}

TY - JOUR
AU - Hencl, Stanislav
AU - Koskela, Pekka
TI - Mappings of finite distortion : discreteness and openness for quasi-light mappings
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 3
SP - 331
EP - 342
LA - eng
KW - discrete and open maps; finite distortion
UR - http://eudml.org/doc/78659
ER -

References

top
  1. [1] Ball J., Global invertibility of Sobolev functions and the interpenetration of matter, Proc. Roy. Soc. Edinburgh Sect. A88 (3–4) (1981) 315-328. Zbl0478.46032MR616782
  2. [2] Federer H., Geometric Measure Theory, Grundlehren Math. Wiss., vol. 153, Springer-Verlag, New York, 1969, (second edition, 1996). Zbl0176.00801MR257325
  3. [3] Fonseca I., Gangbo W., Degree Theory in Analysis and Applications, Clarendon Press, Oxford, 1995. Zbl0852.47030MR1373430
  4. [4] Gol'dstein V., Vodop'yanov S., Quasiconformal mappings and spaces of functions with generalized first derivatives, Sibirsk. Mat. Zh.17 (1976) 515-531. Zbl0353.30019MR414869
  5. [5] Greco L., Sharp integrability of nonnegative Jacobians, Rend. Mat.18 (1998) 585-600. Zbl0991.26005MR1686812
  6. [6] Heinonen J., Koskela P., Sobolev mappings with integrable dilatations, Arch. Rational Mech. Anal.125 (1) (1993) 81-97. Zbl0792.30016MR1241287
  7. [7] Hencl S., Malý J., Mappings of finite distortion: Hausdorff measure of zero sets, Math. Ann.324 (2002) 451-464. Zbl1017.30030MR1938454
  8. [8] Iwaniec T., Koskela P., Onninen J., Mappings of finite distortion: monotonicity and continuity, Invent. Math.144 (2001) 507-531. Zbl1006.30016MR1833892
  9. [9] Iwaniec T., Martin G., Geometric Function Theory and Nonlinear Analysis, Oxford Mathematical Monographs, Clarendon Press, Oxford, 2001. Zbl1045.30011MR1859913
  10. [10] Iwaniec T., Šverák V., On mappings with integrable dilatation, Proc. Amer. Math. Soc.118 (1993) 181-188. Zbl0784.30015MR1160301
  11. [11] Kauhanen J., Koskela P., Malý J., On functions with derivatives in a Lorentz space, Manuscripta Math.100 (1999) 87-101. Zbl0976.26004MR1714456
  12. [12] Kauhanen J., Koskela P., Malý J., Mappings of finite distortion: discreteness and openness, Arch. Ration. Mech. Anal.160 (2001) 135-151. Zbl0998.30024MR1864838
  13. [13] Kauhanen J., Koskela P., Malý J., Mappings of finite distortion: condition N, Michigan Math. J.49 (2001) 169-181. Zbl0997.30018MR1827080
  14. [14] Kauhanen J., Koskela P., Malý J., Onninen J., Zhong X., Mappings of finite distortion: sharp Orlicz-conditions, Rev. Mat. Iberoamericana19 (2003) 857-872. Zbl1059.30017MR2053566
  15. [15] Koskela P., Malý J., Mappings of finite distortion: the zero set of the Jacobian, J. Eur. Math. Soc. (JEMS)5 (2003) 95-105. Zbl1025.30019MR1985612
  16. [16] Koskela P., Zhong X., Minimal assumptions for the integrability of the Jacobian, Ricerche Mat. LI (2002) 297-311. Zbl1096.26005MR2030546
  17. [17] Malý J., Martio O., Lusin’s condition (N) and mappings of the class W 1 , n , J. Reine Angew. Math.458 (1995) 19-36. Zbl0812.30007MR1310951
  18. [18] Malý J., Swanson D., Ziemer W.P., Coarea formula for Sobolev mappings, Trans. Amer. Math. Soc.355 (2) (2003) 477-492. Zbl1034.46032MR1932709
  19. [19] Malý J., Ziemer W.P., Fine Regularity of Solutions of Elliptic Partial Differential Equations, Amer. Math. Soc., Providence, RI, 1997. Zbl0882.35001MR1461542
  20. [20] Manfredi J., Villamor E., An extension of Reshetnyak's theorem, Indiana Univ. Math. J.47 (3) (1998) 1131-1145. Zbl0931.30014MR1665761
  21. [21] Reshetnyak Yu.G., Space mappings with bounded distortion, Sibirsk. Mat. Zh.8 (1967) 629-658. Zbl0167.06601MR994644
  22. [22] Reshetnyak Yu.G., Space Mappings with Bounded Distortion, Transl. Math. Monographs, vol. 73, Amer. Math. Soc., 1989. Zbl0667.30018MR994644
  23. [23] Rickman S., Quasiregular Mappings, Ergeb. Math. Grenzgeb. (3), vol. 26, Springer-Verlag, Berlin, 1993. Zbl0816.30017MR1238941
  24. [24] Titus C., Young G., The extension of interiority, with some applications, Trans. Amer. Math. Soc.103 (1962) 329-340. Zbl0113.38001MR137103
  25. [25] Väisälä J., Minimal mappings in Euclidean spaces, Ann. Acad. Sci. Fenn. Ser. A I366 (1965) 1-22. Zbl0144.22103MR178454
  26. [26] Vuorinen M., Conformal Geometry and Quasiregular Mappings, Lecture Notes in Math., vol. 1319, Springer-Verlag, Berlin, 1988. Zbl0646.30025MR950174

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.