Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem

Angela Pistoia; Tobias Weth

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 2, page 325-340
  • ISSN: 0294-1449

How to cite

top

Pistoia, Angela, and Weth, Tobias. "Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem." Annales de l'I.H.P. Analyse non linéaire 24.2 (2007): 325-340. <http://eudml.org/doc/78737>.

@article{Pistoia2007,
author = {Pistoia, Angela, Weth, Tobias},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {2},
pages = {325-340},
publisher = {Elsevier},
title = {Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem},
url = {http://eudml.org/doc/78737},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Pistoia, Angela
AU - Weth, Tobias
TI - Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 2
SP - 325
EP - 340
LA - eng
UR - http://eudml.org/doc/78737
ER -

References

top
  1. [1] Atkinson F.V., Brezis H., Peletier L.A., Solutions d'équations elliptiques avec exposant de Sobolev critique qui changent de signe, C. R. Acad. Sci. Paris306 (1988) 711-714. Zbl0696.35059MR944417
  2. [2] Atkinson F.V., Brezis H., Peletier L.A., Nodal solutions of elliptic equations with critical Sobolev exponents, J. Differential Equations85 (1990) 151-170. Zbl0702.35099MR1052332
  3. [3] Aubin T., Problèmes isoperimetriques et espaces de Sobolev, J. Differential Geom.11 (1976) 573-598. Zbl0371.46011MR448404
  4. [4] Bahri A., Critical Points at Infinity in Some Variational Problems, Pitman Research Notes in Mathematics Series, vol. 182, Longman, 1989. Zbl0676.58021MR1019828
  5. [5] Bahri A., Coron J.M., On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math.41 (3) (1988) 253-294. Zbl0649.35033MR929280
  6. [6] Bahri A., Li Y., Rey O., On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations3 (1995) 67-93. Zbl0814.35032MR1384837
  7. [7] Bartsch T., Critical point theory on partially ordered Hilbert spaces, J. Funct. Anal.186 (2001) 117-152. Zbl1211.58003MR1863294
  8. [8] Bartsch T., Wang Z.-Q., On the existence of sign changing solutions for semilinear Dirichlet problems, Topol. Methods Nonlinear Anal.7 (1996) 115-131. Zbl0903.58004MR1422008
  9. [9] Bartsch T., Weth T., A note on additional properties of sign changing solutions to superlinear elliptic equations, Topol. Methods Nonlinear Anal.22 (2003) 1-14. Zbl1094.35041MR2037264
  10. [10] Bartsch T., Micheletti A.M., Pistoia A., On the existence and the profile of nodal solutions of elliptic equations involving critical growth, Calc. Var. Partial Differential Equations26 (3) (2006) 265-282. Zbl1104.35009MR2232205
  11. [11] Ben Ayed M., El Mehdi K., Grossi M., Rey O., A nonexistence result of single peaked solutions to a supercritical nonlinear problem, Comm. Contemp. Math.5 (2) (2003) 179-195. Zbl1066.35035MR1966257
  12. [12] Bianchi G., Egnell H., A note on the Sobolev inequality, J. Funct. Anal.100 (1991) 18-24. Zbl0755.46014MR1124290
  13. [13] Brézis H., Peletier L.A., Asymptotics for elliptic equations involving critical growth, in: Partial Differential Equations and the Calculus of Variations, vol. I, Progr. Nonlinear Differential Equations Appl., vol. 1, Birkhäuser, Boston, MA, 1996, pp. 149-192. Zbl0685.35013MR1034005
  14. [14] Caffarelli L., Gidas B., Spruck J., Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math.42 (1989) 271-297. Zbl0702.35085MR982351
  15. [15] Castro A., Clapp M., The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain, Nonlinearity16 (2003) 579-590. Zbl1108.35054MR1959099
  16. [16] Castro A., Cossio J., Neuberger J.M., A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math.27 (1997) 1041-1053. Zbl0907.35050MR1627654
  17. [17] Cerami G., Solimini S., Struwe M., Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal.69 (1986) 298-306. Zbl0614.35035MR867663
  18. [18] Clapp M., Weth T., Multiple solutions for the Brezis–Nirenberg problem, Adv. Differential Equations10 (4) (2005) 463-480. Zbl1284.35151
  19. [19] Clapp M., Weth T., Minimal nodal solutions of the pure critical exponent problem on a symmetric domain, Calc. Var. Partial Differential Equations21 (1) (2004) 1-14. Zbl1097.35048MR2078744
  20. [20] del Pino M., Dolbeault J., Musso M., “Bubble-tower” radial solutions in the slightly supercritical Brezis–Nirenberg problem, J. Differential Equations193 (2) (2003) 280-306. Zbl1140.35413
  21. [21] del Pino M., Dolbeault J., Musso M., The Brezis–Nirenberg problem near criticality in dimension 3, J. Math. Pures Appl. (9)83 (12) (2004) 1405-1456. Zbl1130.35040
  22. [22] del Pino M., Felmer P., Musso M., Two-bubble solutions in the super-critical Bahri–Coron's problem, Calc. Var. Partial Differential Equations16 (2003) 113-145. Zbl1142.35421
  23. [23] del Pino M., Felmer P., Musso M., Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries, Bull. London Math. Soc.35 (2003) 513-521. Zbl1109.35334MR1979006
  24. [24] del Pino M., Musso M., Pistoia A., Super-critical boundary bubbling in a semilinear Neumann problem, Ann. Inst. H. Poincaré Anal. Non Linéaire22 (1) (2005) 45-82. Zbl1130.35064MR2114411
  25. [25] Ding W.Y., On a conformally invariant elliptic equation on R N , Comm. Math. Phys.107 (1986) 331-335. Zbl0608.35017MR863646
  26. [26] Flucher M., Wei J., Semilinear Dirichlet problem with nearly critical exponent, asymptotic location of hot spots, Manuscripta Math.94 (1997) 337-346. Zbl0892.35061MR1485441
  27. [27] Fortunato D., Jannelli E., Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains, Proc. Roy. Soc. Edinburgh105 (1987) 205-213. Zbl0676.35024MR890056
  28. [28] Ge Y., Jing R., Pacard F., Bubble towers for supercritical semilinear elliptic equations, J. Funct. Anal.221 (2) (2005) 251-302. Zbl1129.35379MR2124865
  29. [29] Han Z.C., Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire8 (1991) 159-174. Zbl0729.35014MR1096602
  30. [30] Hebey E., Vaugon M., Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev growth, J. Funct. Anal.119 (1994) 298-318. Zbl0798.35052MR1261094
  31. [31] Hirano N., Micheletti A.M., Pistoia A., Existence of changing-sign solutions for some critical problems on R N , Comm. Pure Appl. Anal.4 (1) (2005) 143-164. Zbl1123.35019MR2126282
  32. [32] Kazdan J., Warner F.W., Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math.28 (1975) 567-597. Zbl0325.35038MR477445
  33. [33] Li Y.Y., Prescribing scalar curvature on S n and related problems. I, J. Differential Equations120 (2) (1995) 319-410. Zbl0827.53039MR1347349
  34. [34] Micheletti A.M., Pistoia A., On the effect of the domain geometry on the existence of sign changing solutions to elliptic problems with critical and supercritical growth, Nonlinearity17 (3) (2004) 851-866. Zbl1102.35042MR2057131
  35. [35] Molle R., Passaseo D., Positive solutions for slightly super-critical elliptic equations in contractible domains, C. R. Math. Acad. Sci. Paris, Ser. I335 (2002) 459-462. Zbl1010.35043MR1937113
  36. [36] Müller-Pfeiffer E., On the number of nodal domains for elliptic differential operators, J. London Math. Soc. (2)31 (1985) 91-100. Zbl0579.35063MR810566
  37. [37] Musso M., Pistoia A., Multispike solutions for a nonlinear elliptic problem involving critical Sobolev exponent, Indiana Univ. Math. J.5 (2002) 541-579. Zbl1074.35037MR1911045
  38. [38] A. Pistoia, O. Rey, Multiplicity of solutions to the supercritical Bahri–Coron's problem in pierced domains, Adv. Differential Equations, in press. Zbl1166.35333
  39. [39] Pohožaev S.I., On the eigenfunctions of the equation Δ u + λ f u = 0 , Dokl. Akad. Nauk SSSR165 (1965) 36-39, (in Russian). Zbl0141.30202MR192184
  40. [40] Rey O., Blow-up points of solutions to elliptic equations with limiting nonlinearity, Differential Integral Equations4 (1991) 1155-1167. Zbl0830.35043MR1133750
  41. [41] Rey O., The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal.89 (1990) 1-52. Zbl0786.35059MR1040954
  42. [42] Rey O., Proof of two conjectures of H. Brezis and L.A. Peletier, Manuscripta Math.65 (1989) 19-37. Zbl0708.35032MR1006624
  43. [43] Talenti G., Best constants in Sobolev inequality, Ann. Mat. Pura Appl.110 (1976) 353-372. Zbl0353.46018MR463908

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.