Transition layer for the heterogeneous Allen–Cahn equation

Fethi Mahmoudi; Andrea Malchiodi; Juncheng Wei

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 3, page 609-631
  • ISSN: 0294-1449

How to cite

top

Mahmoudi, Fethi, Malchiodi, Andrea, and Wei, Juncheng. "Transition layer for the heterogeneous Allen–Cahn equation." Annales de l'I.H.P. Analyse non linéaire 25.3 (2008): 609-631. <http://eudml.org/doc/78803>.

@article{Mahmoudi2008,
author = {Mahmoudi, Fethi, Malchiodi, Andrea, Wei, Juncheng},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Fife-Greenlee problem; heterogeneous Allen-Cahn equation; interior transition layers; spectral gaps},
language = {eng},
number = {3},
pages = {609-631},
publisher = {Elsevier},
title = {Transition layer for the heterogeneous Allen–Cahn equation},
url = {http://eudml.org/doc/78803},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Mahmoudi, Fethi
AU - Malchiodi, Andrea
AU - Wei, Juncheng
TI - Transition layer for the heterogeneous Allen–Cahn equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 3
SP - 609
EP - 631
LA - eng
KW - Fife-Greenlee problem; heterogeneous Allen-Cahn equation; interior transition layers; spectral gaps
UR - http://eudml.org/doc/78803
ER -

References

top
  1. [1] Alikakos N.D., Bates P.W., On the singular limit in a phase field model of phase transitions, Ann. Inst. H. Poincaré Anal. Non Linéaire5 (2) (1988) 141-178. Zbl0696.35060MR954469
  2. [2] Alikakos N.D., Bates P.W., Chen X., Periodic traveling waves and locating oscillating patterns in multidimensional domains, Trans. Amer. Math. Soc.351 (7) (1999) 2777-2805. Zbl0929.35067MR1467460
  3. [3] Alikakos N.D., Bates P.W., Fusco G., Solutions to the nonautonomous bistable equation with specified Morse index. I. Existence, Trans. Amer. Math. Soc.340 (2) (1993) 641-654. Zbl0788.34012MR1167183
  4. [4] Alikakos N., Chen X., Fusco G., Motion of a droplet by surface tension along the boundary, Cal. Var. Partial Differential Equations11 (2000) 233-306. Zbl0994.35052MR1797871
  5. [5] Alikakos N.D., Simpson H.C., A variational approach for a class of singular perturbation problems and applications, Proc. Roy. Soc. Edinburgh Sect. A107 (1–2) (1987) 27-42. Zbl0651.49011MR918891
  6. [6] Allen S., Cahn J.W., A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall.27 (1979) 1084-1095. 
  7. [7] Angenent S., Mallet-Paret J., Peletier L.A., Stable transition layers in a semilinear boundary value problem, J. Differential Equations67 (1987) 212-242. Zbl0634.35041MR879694
  8. [8] Bronsard L., Stoth B., On the existence of high multiplicity interfaces, Math. Res. Lett.3 (1996) 117-131. Zbl0853.35008MR1393381
  9. [9] Chavel I., Riemannian Geometry—A Modern Introduction, Cambridge Tracts in Math., vol. 108, Cambridge Univ. Press, Cambridge, 1993. Zbl0810.53001MR1271141
  10. [10] Dancer E.N., Yan S., Multi-layer solutions for an elliptic problem, J. Differential Equations194 (2003) 382-405. Zbl1109.35042MR2006218
  11. [11] Dancer E.N., Yan S., Construction of various types of solutions for an elliptic problem, Calc. Var. Partial Differential Equations20 (1) (2004) 93-118. Zbl1154.35348MR2047147
  12. [12] del Pino M., Layers with nonsmooth interface in a semilinear elliptic problem, Comm. Partial Differential Equations17 (9–10) (1992) 1695-1708. Zbl0786.35057MR1187626
  13. [13] del Pino M., Radially symmetric internal layers in a semilinear elliptic system, Trans. Amer. Math. Soc.347 (12) (1995) 4807-4837. Zbl0853.35009MR1303116
  14. [14] del Pino M., Kowalczyk M., Wei J., Concentration on curves for nonlinear Schrödinger equations, Comm. Pure Appl. Math.70 (2007) 113-146. Zbl1123.35003MR2270164
  15. [15] del Pino M., Kowalczyk M., Wei J., Resonance and interior layers in an inhomogeneous phase transition model, SIAM J. Math. Anal.38 (5) (2007) 1542-1564. Zbl1229.35076MR2286019
  16. [16] do Nascimento A.S., Stable transition layers in a semilinear diffusion equation with spatial inhomogeneities in N-dimensional domains, J. Differential Equations190 (1) (2003) 16-38. Zbl1019.35008MR1970954
  17. [17] Y. Du, K. Nakashima, Morse index of layered solutions to the heterogeneous Allen–Cahn equation, preprint. Zbl1121.35042MR2334593
  18. [18] Fife P.C., Boundary and interior transition layer phenomena for pairs of second-order differential equations, J. Math. Anal. Appl.54 (2) (1976) 497-521. Zbl0345.34044MR419961
  19. [19] Fife P., Greenlee M.W., Interior transition layers of elliptic boundary value problem with a small parameter, Russian Math. Surveys29 (4) (1974) 103-131. Zbl0309.35035MR481510
  20. [20] Flores G., Padilla P., Higher energy solutions in the theory of phase transitions: a variational approach, J. Differential Equations169 (2001) 190-207. Zbl0970.35037MR1808464
  21. [21] Hale J., Sakamoto K., Existence and stability of transition layers, Japan J. Appl. Math.5 (3) (1988) 367-405. Zbl0669.34027MR965871
  22. [22] Kato T., Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Zbl0836.47009MR1335452
  23. [23] Kohn R.V., Sternberg P., Local minimizers and singular perturbations, Proc. Roy. Soc. Edinburgh Sect. A11 (1989) 69-84. Zbl0676.49011MR985990
  24. [24] Kowalczyk M., On the existence and Morse index of solutions to the Allen–Cahn equation in two dimensions, Ann. Mat. Pura Appl. (4)184 (1) (2005) 17-52. Zbl1150.35035MR2128093
  25. [25] Mahmoudi F., Malchiodi A., Concentration on minimal submanifolds for a singularly perturbed Neumann problem, Adv. Math.209 (2) (2007) 460-525. Zbl1160.35011MR2296306
  26. [26] Malchiodi A., Solutions concentrating at curves for some singularly perturbed elliptic problems, C. R. Math. Acad. Sci. Paris, Ser. I338 (10) (2004) 775-780. Zbl1081.35044MR2059486
  27. [27] Malchiodi A., Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains, Geom. Funct. Anal.15 (6) (2005) 1162-1222. Zbl1087.35010MR2221246
  28. [28] Malchiodi A., Montenegro M., Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math.55 (2002) 1507-1568. Zbl1124.35305MR1923818
  29. [29] Malchiodi A., Montenegro M., Multidimensional boundary layers for a singularly perturbed Neumann problem, Duke Math. J.124 (1) (2004) 105-143. Zbl1065.35037MR2072213
  30. [30] Malchiodi A., Ni W.-M., Wei J., Boundary clustered interfaces for the Allen–Cahn equation, Pacific J. Math.229 (2) (2007) 447-468. Zbl1221.35150MR2276519
  31. [31] Malchiodi A., Wei J., Boundary interface for the Allen–Cahn equation, J. Fixed Point Theory Appl.1 (2) (2007) 305-336. Zbl1144.35326MR2336614
  32. [32] Modica L., The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration. Mech. Anal.98 (1987) 357-383. Zbl0616.76004MR866718
  33. [33] Müller S., Singular perturbations as a selection criterion for periodic minimizing sequences, Calc. Var. Partial Differential Equations1 (2) (1993) 169-204. Zbl0821.49015MR1261722
  34. [34] Nakashima K., Multi-layered stationary solutions for a spatially inhomogeneous Allen–Cahn equation, J. Differential Equations191 (2003) 234-276. Zbl1034.34024MR1973289
  35. [35] Nakashima K., Tanaka K., Clustering layers and boundary layers in spatially inhomogeneous phase transition problems, Ann. Inst. H. Poincaré Anal. Non Linéaire20 (1) (2003) 107-143. Zbl1114.35005MR1958164
  36. [36] Nishiura Y., Fujii H., Stability of singularly perturbed solutions to systems of reaction–diffusion equations, SIAM J. Math. Anal.18 (1987) 1726-1770. Zbl0638.35010MR911661
  37. [37] Pacard F., Ritoré M., From constant mean curvature hypersurfaces to the gradient theory of phase transitions, J. Differential Geom.64 (2003) 359-423. Zbl1070.58014MR2032110
  38. [38] Padilla P., Tonegawa Y., On the convergence of stable phase transitions, Comm. Pure Appl. Math.51 (1998) 551-579. Zbl0955.58011MR1611144
  39. [39] Rabinowitz P.H., Stredulinsky E., Mixed states for an Allen–Cahn type equation, I, Comm. Pure Appl. Math.56 (2003) 1078-1134. Zbl1274.35122MR1989227
  40. [40] Rabinowitz P.H., Stredulinsky E., Mixed states for an Allen–Cahn type equation, II, Calc. Var. Partial Differential Equations21 (2004) 157-207. Zbl1161.35397MR2085301
  41. [41] Sakamoto K., Construction and stability an analysis of transition layer solutions in reaction–diffusion systems, Tohoku Math. J. (2)42 (1) (1990) 17-44. Zbl0708.35006MR1036472
  42. [42] Sakamoto K., Infinitely many fine modes bifurcating from radially symmetric internal layers, Asymptotic Anal.42 (1–2) (2005) 55-104. Zbl1210.35019MR2133874
  43. [43] Sternberg P., Zumbrun K., Connectivity of phase boundaries in strictly convex domains, Arch. Ration. Mech. Anal.141 (4) (1998) 375-400. Zbl0911.49025MR1620498

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.