Transition layer for the heterogeneous Allen–Cahn equation
Fethi Mahmoudi; Andrea Malchiodi; Juncheng Wei
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 3, page 609-631
- ISSN: 0294-1449
Access Full Article
topHow to cite
topMahmoudi, Fethi, Malchiodi, Andrea, and Wei, Juncheng. "Transition layer for the heterogeneous Allen–Cahn equation." Annales de l'I.H.P. Analyse non linéaire 25.3 (2008): 609-631. <http://eudml.org/doc/78803>.
@article{Mahmoudi2008,
author = {Mahmoudi, Fethi, Malchiodi, Andrea, Wei, Juncheng},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Fife-Greenlee problem; heterogeneous Allen-Cahn equation; interior transition layers; spectral gaps},
language = {eng},
number = {3},
pages = {609-631},
publisher = {Elsevier},
title = {Transition layer for the heterogeneous Allen–Cahn equation},
url = {http://eudml.org/doc/78803},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Mahmoudi, Fethi
AU - Malchiodi, Andrea
AU - Wei, Juncheng
TI - Transition layer for the heterogeneous Allen–Cahn equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 3
SP - 609
EP - 631
LA - eng
KW - Fife-Greenlee problem; heterogeneous Allen-Cahn equation; interior transition layers; spectral gaps
UR - http://eudml.org/doc/78803
ER -
References
top- [1] Alikakos N.D., Bates P.W., On the singular limit in a phase field model of phase transitions, Ann. Inst. H. Poincaré Anal. Non Linéaire5 (2) (1988) 141-178. Zbl0696.35060MR954469
- [2] Alikakos N.D., Bates P.W., Chen X., Periodic traveling waves and locating oscillating patterns in multidimensional domains, Trans. Amer. Math. Soc.351 (7) (1999) 2777-2805. Zbl0929.35067MR1467460
- [3] Alikakos N.D., Bates P.W., Fusco G., Solutions to the nonautonomous bistable equation with specified Morse index. I. Existence, Trans. Amer. Math. Soc.340 (2) (1993) 641-654. Zbl0788.34012MR1167183
- [4] Alikakos N., Chen X., Fusco G., Motion of a droplet by surface tension along the boundary, Cal. Var. Partial Differential Equations11 (2000) 233-306. Zbl0994.35052MR1797871
- [5] Alikakos N.D., Simpson H.C., A variational approach for a class of singular perturbation problems and applications, Proc. Roy. Soc. Edinburgh Sect. A107 (1–2) (1987) 27-42. Zbl0651.49011MR918891
- [6] Allen S., Cahn J.W., A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall.27 (1979) 1084-1095.
- [7] Angenent S., Mallet-Paret J., Peletier L.A., Stable transition layers in a semilinear boundary value problem, J. Differential Equations67 (1987) 212-242. Zbl0634.35041MR879694
- [8] Bronsard L., Stoth B., On the existence of high multiplicity interfaces, Math. Res. Lett.3 (1996) 117-131. Zbl0853.35008MR1393381
- [9] Chavel I., Riemannian Geometry—A Modern Introduction, Cambridge Tracts in Math., vol. 108, Cambridge Univ. Press, Cambridge, 1993. Zbl0810.53001MR1271141
- [10] Dancer E.N., Yan S., Multi-layer solutions for an elliptic problem, J. Differential Equations194 (2003) 382-405. Zbl1109.35042MR2006218
- [11] Dancer E.N., Yan S., Construction of various types of solutions for an elliptic problem, Calc. Var. Partial Differential Equations20 (1) (2004) 93-118. Zbl1154.35348MR2047147
- [12] del Pino M., Layers with nonsmooth interface in a semilinear elliptic problem, Comm. Partial Differential Equations17 (9–10) (1992) 1695-1708. Zbl0786.35057MR1187626
- [13] del Pino M., Radially symmetric internal layers in a semilinear elliptic system, Trans. Amer. Math. Soc.347 (12) (1995) 4807-4837. Zbl0853.35009MR1303116
- [14] del Pino M., Kowalczyk M., Wei J., Concentration on curves for nonlinear Schrödinger equations, Comm. Pure Appl. Math.70 (2007) 113-146. Zbl1123.35003MR2270164
- [15] del Pino M., Kowalczyk M., Wei J., Resonance and interior layers in an inhomogeneous phase transition model, SIAM J. Math. Anal.38 (5) (2007) 1542-1564. Zbl1229.35076MR2286019
- [16] do Nascimento A.S., Stable transition layers in a semilinear diffusion equation with spatial inhomogeneities in N-dimensional domains, J. Differential Equations190 (1) (2003) 16-38. Zbl1019.35008MR1970954
- [17] Y. Du, K. Nakashima, Morse index of layered solutions to the heterogeneous Allen–Cahn equation, preprint. Zbl1121.35042MR2334593
- [18] Fife P.C., Boundary and interior transition layer phenomena for pairs of second-order differential equations, J. Math. Anal. Appl.54 (2) (1976) 497-521. Zbl0345.34044MR419961
- [19] Fife P., Greenlee M.W., Interior transition layers of elliptic boundary value problem with a small parameter, Russian Math. Surveys29 (4) (1974) 103-131. Zbl0309.35035MR481510
- [20] Flores G., Padilla P., Higher energy solutions in the theory of phase transitions: a variational approach, J. Differential Equations169 (2001) 190-207. Zbl0970.35037MR1808464
- [21] Hale J., Sakamoto K., Existence and stability of transition layers, Japan J. Appl. Math.5 (3) (1988) 367-405. Zbl0669.34027MR965871
- [22] Kato T., Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Zbl0836.47009MR1335452
- [23] Kohn R.V., Sternberg P., Local minimizers and singular perturbations, Proc. Roy. Soc. Edinburgh Sect. A11 (1989) 69-84. Zbl0676.49011MR985990
- [24] Kowalczyk M., On the existence and Morse index of solutions to the Allen–Cahn equation in two dimensions, Ann. Mat. Pura Appl. (4)184 (1) (2005) 17-52. Zbl1150.35035MR2128093
- [25] Mahmoudi F., Malchiodi A., Concentration on minimal submanifolds for a singularly perturbed Neumann problem, Adv. Math.209 (2) (2007) 460-525. Zbl1160.35011MR2296306
- [26] Malchiodi A., Solutions concentrating at curves for some singularly perturbed elliptic problems, C. R. Math. Acad. Sci. Paris, Ser. I338 (10) (2004) 775-780. Zbl1081.35044MR2059486
- [27] Malchiodi A., Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains, Geom. Funct. Anal.15 (6) (2005) 1162-1222. Zbl1087.35010MR2221246
- [28] Malchiodi A., Montenegro M., Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math.55 (2002) 1507-1568. Zbl1124.35305MR1923818
- [29] Malchiodi A., Montenegro M., Multidimensional boundary layers for a singularly perturbed Neumann problem, Duke Math. J.124 (1) (2004) 105-143. Zbl1065.35037MR2072213
- [30] Malchiodi A., Ni W.-M., Wei J., Boundary clustered interfaces for the Allen–Cahn equation, Pacific J. Math.229 (2) (2007) 447-468. Zbl1221.35150MR2276519
- [31] Malchiodi A., Wei J., Boundary interface for the Allen–Cahn equation, J. Fixed Point Theory Appl.1 (2) (2007) 305-336. Zbl1144.35326MR2336614
- [32] Modica L., The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration. Mech. Anal.98 (1987) 357-383. Zbl0616.76004MR866718
- [33] Müller S., Singular perturbations as a selection criterion for periodic minimizing sequences, Calc. Var. Partial Differential Equations1 (2) (1993) 169-204. Zbl0821.49015MR1261722
- [34] Nakashima K., Multi-layered stationary solutions for a spatially inhomogeneous Allen–Cahn equation, J. Differential Equations191 (2003) 234-276. Zbl1034.34024MR1973289
- [35] Nakashima K., Tanaka K., Clustering layers and boundary layers in spatially inhomogeneous phase transition problems, Ann. Inst. H. Poincaré Anal. Non Linéaire20 (1) (2003) 107-143. Zbl1114.35005MR1958164
- [36] Nishiura Y., Fujii H., Stability of singularly perturbed solutions to systems of reaction–diffusion equations, SIAM J. Math. Anal.18 (1987) 1726-1770. Zbl0638.35010MR911661
- [37] Pacard F., Ritoré M., From constant mean curvature hypersurfaces to the gradient theory of phase transitions, J. Differential Geom.64 (2003) 359-423. Zbl1070.58014MR2032110
- [38] Padilla P., Tonegawa Y., On the convergence of stable phase transitions, Comm. Pure Appl. Math.51 (1998) 551-579. Zbl0955.58011MR1611144
- [39] Rabinowitz P.H., Stredulinsky E., Mixed states for an Allen–Cahn type equation, I, Comm. Pure Appl. Math.56 (2003) 1078-1134. Zbl1274.35122MR1989227
- [40] Rabinowitz P.H., Stredulinsky E., Mixed states for an Allen–Cahn type equation, II, Calc. Var. Partial Differential Equations21 (2004) 157-207. Zbl1161.35397MR2085301
- [41] Sakamoto K., Construction and stability an analysis of transition layer solutions in reaction–diffusion systems, Tohoku Math. J. (2)42 (1) (1990) 17-44. Zbl0708.35006MR1036472
- [42] Sakamoto K., Infinitely many fine modes bifurcating from radially symmetric internal layers, Asymptotic Anal.42 (1–2) (2005) 55-104. Zbl1210.35019MR2133874
- [43] Sternberg P., Zumbrun K., Connectivity of phase boundaries in strictly convex domains, Arch. Ration. Mech. Anal.141 (4) (1998) 375-400. Zbl0911.49025MR1620498
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.