Clustering layers and boundary layers in spatially inhomogeneous phase transition problems
Kimie Nakashima; Kazunaga Tanaka
Annales de l'I.H.P. Analyse non linéaire (2003)
- Volume: 20, Issue: 1, page 107-143
- ISSN: 0294-1449
Access Full Article
topHow to cite
topNakashima, Kimie, and Tanaka, Kazunaga. "Clustering layers and boundary layers in spatially inhomogeneous phase transition problems." Annales de l'I.H.P. Analyse non linéaire 20.1 (2003): 107-143. <http://eudml.org/doc/78569>.
@article{Nakashima2003,
author = {Nakashima, Kimie, Tanaka, Kazunaga},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {1},
pages = {107-143},
publisher = {Elsevier},
title = {Clustering layers and boundary layers in spatially inhomogeneous phase transition problems},
url = {http://eudml.org/doc/78569},
volume = {20},
year = {2003},
}
TY - JOUR
AU - Nakashima, Kimie
AU - Tanaka, Kazunaga
TI - Clustering layers and boundary layers in spatially inhomogeneous phase transition problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 1
SP - 107
EP - 143
LA - eng
UR - http://eudml.org/doc/78569
ER -
References
top- [1] S. Ai, S.P. Hastings, A shooting approach to layers and chaos in a forced duffing equation, I, Preprint. Zbl1025.34015MR1935609
- [2] Ambrosetti A., Badiale M., Cingolani S., Semiclassical states of nonlinear Schrödinger equations, Arch. Rat. Mech. Anal.140 (1997) 285-300. Zbl0896.35042MR1486895
- [3] Angenent S.B., Mallet-Paret J., Peletier L.A., Stable transition layers in a semilinear boundary value problem, J. Differential Equations67 (1987) 212-242. Zbl0634.35041MR879694
- [4] Chen C.-N., Multiple solutions for a class of nonlinear Sturm–Liouville problems on the half line, J. Differential Equations85 (1990) 236-275. Zbl0703.34032MR1054550
- [5] del Pino M., Felmer P., Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. PDE4 (1996) 121-137. Zbl0844.35032MR1379196
- [6] del Pino M., Felmer P., Multi-peak bound states of nonlinear Schrödinger equations, Ann. IHP, Analyse Nonlinéaire15 (1998) 127-149. Zbl0901.35023MR1614646
- [7] Fleor A., Weinstein A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal.69 (3) (1986) 397-408. Zbl0613.35076MR867665
- [8] Gedeon T., Kokubu H., Mischaikow K., Oka H., Chaotic solutions in slowly varying perturbations of Hamiltonian systems with applications to shallow water sloshing, J. Dynam. Differential Equations14 (2002) 63-84. Zbl1005.37028MR1878245
- [9] Gui C., Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Comm. Partial Differential Equations21 (1996) 787-820. Zbl0857.35116MR1391524
- [10] Gui C., Wei J., Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations158 (1999) 1-27. Zbl1061.35502MR1721719
- [11] Hemple J.A., Multiple solutions for a class of nonlinear boundary value problems, Indiana Univ. Math. J.20 (11) (1971) 983-996. Zbl0225.35045MR279423
- [12] Kang X., Wei J., On interacting bumps of semi-classical states of nonlinear Schrödinger equations, Adv. Differential Equations5 (2000) 899-928. Zbl1217.35065MR1776345
- [13] Kath W.L., Slowly varying phase planes and boundary-layer theory, Stud. Appl. Math.72 (3) (1985) 221-239. Zbl0586.76047MR790130
- [14] Li Y.-Y., On a singularly perturbed elliptic equation, Adv. Differential Equations2 (1997) 955-980. Zbl1023.35500MR1606351
- [15] K. Nakashima, Multi-layered stationary solutions for a spatially inhomogeneous Allen–Cahn equation, J. Differential Equations, to appear. Zbl1034.34024MR1973289
- [16] Nakashima K., Stable transition layers in a balanced bistable equation, Differential Integral Equations13 (2000) 1025-1038. Zbl0981.34011MR1775244
- [17] Oh Y.-G., Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V)a, Comm. Partial Differential Equations13 (1988) 1499-1519. Zbl0702.35228MR970154
- [18] Oh Y.-G., Stability of semiclassical bound states of nonlinear Schrödinger equations with potentials, Comm. Math. Phys.121 (1989) 11-33. Zbl0693.35132MR985612
- [19] Oh Y.-G., On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Comm. Math. Phys.131 (1990) 223-253. Zbl0753.35097MR1065671
- [20] Rabinowitz P.H., On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys.43 (1992) 270-291. Zbl0763.35087MR1162728
- [21] Wang X., On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys.153 (1993) 229-244. Zbl0795.35118MR1218300
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.