Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation

Peter Constantin; Jiahong Wu

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 6, page 1103-1110
  • ISSN: 0294-1449

How to cite

top

Constantin, Peter, and Wu, Jiahong. "Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation." Annales de l'I.H.P. Analyse non linéaire 25.6 (2008): 1103-1110. <http://eudml.org/doc/78825>.

@article{Constantin2008,
author = {Constantin, Peter, Wu, Jiahong},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {supercritical dissipation; Leray-Hopf weak solution},
language = {eng},
number = {6},
pages = {1103-1110},
publisher = {Elsevier},
title = {Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation},
url = {http://eudml.org/doc/78825},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Constantin, Peter
AU - Wu, Jiahong
TI - Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 6
SP - 1103
EP - 1110
LA - eng
KW - supercritical dissipation; Leray-Hopf weak solution
UR - http://eudml.org/doc/78825
ER -

References

top
  1. [1] Caffarelli L., Vasseur A., Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, arXiv:, math.AP/0608447. Zbl1204.35063
  2. [2] Chae D., On the regularity conditions for the dissipative quasi-geostrophic equations, SIAM J. Math. Anal.37 (2006) 1649-1656. Zbl1141.76010MR2215601
  3. [3] Chae D., Lee J., Global well-posedness in the super-critical dissipative quasi-geostrophic equations, Commun. Math. Phys.233 (2003) 297-311. Zbl1019.86002MR1962043
  4. [4] Chen Q., Miao C., Zhang Z., A new Bernstein inequality and the 2D dissipative quasi-geostrophic equation, Commun. Math. Phys.271 (2007) 821-838. Zbl1142.35069MR2291797
  5. [5] Constantin P., Euler equations, Navier–Stokes equations and turbulence, in: Mathematical foundation of turbulent viscous flows, Lecture Notes in Math., vol. 1871, Springer, Berlin, 2006, pp. 1-43. Zbl1190.76146MR2196360
  6. [6] Constantin P., Cordoba D., Wu J., On the critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J.50 (2001) 97-107. Zbl0989.86004MR1855665
  7. [7] Constantin P., Majda A., Tabak E., Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar, Nonlinearity7 (1994) 1495-1533. Zbl0809.35057MR1304437
  8. [8] Constantin P., Wu J., Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal.30 (1999) 937-948. Zbl0957.76093MR1709781
  9. [9] Córdoba A., Córdoba D., A maximum principle applied to quasi-geostrophic equations, Commun. Math. Phys.249 (2004) 511-528. Zbl1309.76026MR2084005
  10. [10] Held I., Pierrehumbert R., Garner S., Swanson K., Surface quasi-geostrophic dynamics, J. Fluid Mech.282 (1995) 1-20. Zbl0832.76012MR1312238
  11. [11] T. Hmidi, S. Keraani, On the global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces, Adv. Math., in press. Zbl1119.76070MR2349714
  12. [12] Ju N., The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations, Commun. Math. Phys.255 (2005) 161-181. Zbl1088.37049MR2123380
  13. [13] Ju N., Global solutions to the two dimensional quasi-geostrophic equation with critical or super-critical dissipation, Math. Ann.334 (2006) 627-642. Zbl1145.76053MR2207877
  14. [14] Kiselev A., Nazarov F., Volberg A., Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math.167 (2007) 445-453. Zbl1121.35115MR2276260
  15. [15] Marchand F., Lemarié-Rieusset P.G., Solutions auto-similaires non radiales pour l'équation quasi-géostrophique dissipative critique, C. R. Math. Acad. Sci. Paris, Ser. I341 (2005) 535-538. Zbl1155.76320MR2181389
  16. [16] Pedlosky J., Geophysical Fluid Dynamics, Springer, New York, 1987. Zbl0713.76005
  17. [17] S. Resnick, Dynamical problems in nonlinear advective partial differential equations, Ph.D. thesis, University of Chicago, 1995. 
  18. [18] Schonbek M., Schonbek T., Asymptotic behavior to dissipative quasi-geostrophic flows, SIAM J. Math. Anal.35 (2003) 357-375. Zbl1126.76386MR2001105
  19. [19] Schonbek M., Schonbek T., Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows, Discrete Contin. Dyn. Syst.13 (2005) 1277-1304. Zbl1091.35070MR2166670
  20. [20] Wu J., The quasi-geostrophic equation and its two regularizations, Comm. Partial Differential Equations27 (2002) 1161-1181. Zbl1012.35067MR1916560
  21. [21] Wu J., Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces, SIAM J. Math. Anal.36 (2004/2005) 1014-1030. Zbl1083.76064MR2111923
  22. [22] Wu J., The quasi-geostrophic equation with critical or supercritical dissipation, Nonlinearity18 (2005) 139-154. Zbl1067.35002MR2109471
  23. [23] Wu J., Solutions of the 2-D quasi-geostrophic equation in Hölder spaces, Nonlinear Anal.62 (2005) 579-594. Zbl1116.35348MR2149903
  24. [24] Wu J., Existence and uniqueness results for the 2-D dissipative quasi-geostrophic equation, Nonlinear Anal.67 (2007) 3013-3036. Zbl1122.76014MR2347594

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.