Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations

Peter Constantin; Jiahong Wu

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 1, page 159-180
  • ISSN: 0294-1449

How to cite

top

Constantin, Peter, and Wu, Jiahong. "Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations." Annales de l'I.H.P. Analyse non linéaire 26.1 (2009): 159-180. <http://eudml.org/doc/78833>.

@article{Constantin2009,
author = {Constantin, Peter, Wu, Jiahong},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quasi-geostrophic equations; Leray-Hopf weak solutions; Besov space},
language = {eng},
number = {1},
pages = {159-180},
publisher = {Elsevier},
title = {Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations},
url = {http://eudml.org/doc/78833},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Constantin, Peter
AU - Wu, Jiahong
TI - Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 1
SP - 159
EP - 180
LA - eng
KW - quasi-geostrophic equations; Leray-Hopf weak solutions; Besov space
UR - http://eudml.org/doc/78833
ER -

References

top
  1. [1] Caffarelli L., Silvestre L., An extension problem related to the fractional Laplacian, arXiv:math.AP/0608640. Zbl1143.26002
  2. [2] Caffarelli L., Vasseur A., Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, arXiv:math.AP/0608447. Zbl1204.35063
  3. [3] Chae D., On the regularity conditions for the dissipative quasi-geostrophic equations, SIAM J. Math. Anal.37 (2006) 1649-1656. Zbl1141.76010MR2215601
  4. [4] Chae D., Lee J., Global well-posedness in the super-critical dissipative quasi-geostrophic equations, Commun. Math. Phys.233 (2003) 297-311. Zbl1019.86002MR1962043
  5. [5] Chen Q., Miao C., Zhang Z., A new Bernstein inequality and the 2D dissipative quasi-geostrophic equation, Commun. Math. Phys.271 (2007) 821-838. Zbl1142.35069MR2291797
  6. [6] Constantin P., Euler equations, Navier–Stokes equations and turbulence. Mathematical Foundation of Turbulent Viscous Flows, in: Lecture Notes in Math., vol. 1871, Springer, Berlin, 2006, pp. 1-43. Zbl1190.76146MR2196360
  7. [7] Constantin P., Cordoba D., Wu J., On the critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J.50 (2001) 97-107. Zbl0989.86004MR1855665
  8. [8] Constantin P., Majda A., Tabak E., Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar, Nonlinearity7 (1994) 1495-1533. Zbl0809.35057MR1304437
  9. [9] Constantin P., Wu J., Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal.30 (1999) 937-948. Zbl0957.76093MR1709781
  10. [10] Constantin P., Wu J., Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire25 (6) (2008) 1103-1110. Zbl1149.76052MR2466323
  11. [11] Córdoba A., Córdoba D., A maximum principle applied to quasi-geostrophic equations, Commun. Math. Phys.249 (2004) 511-528. Zbl1309.76026MR2084005
  12. [12] Held I., Pierrehumbert R., Garner S., Swanson K., Surface quasi-geostrophic dynamics, J. Fluid Mech.282 (1995) 1-20. Zbl0832.76012MR1312238
  13. [13] T. Hmidi, S. Keraani, On the global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces, Adv. Math., in press. Zbl1119.76070MR2349714
  14. [14] Ju N., The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations, Commun. Math. Phys.255 (2005) 161-181. Zbl1088.37049MR2123380
  15. [15] Kiselev A., Nazarov F., Volberg A., Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math.167 (2007) 445-453. Zbl1121.35115MR2276260
  16. [16] Marchand F., Lemarié-Rieusset P.G., Solutions auto-similaires non radiales pour l'équation quasi-géostrophique dissipative critique, C. R. Math. Acad. Sci. Paris, Ser. I341 (2005) 535-538. Zbl1155.76320MR2181389
  17. [17] Pedlosky J., Geophysical Fluid Dynamics, Springer, New York, 1987. Zbl0713.76005
  18. [18] S. Resnick, Dynamical problems in nonlinear advective partial differential equations, Ph.D. thesis, University of Chicago, 1995. 
  19. [19] Schonbek M., Schonbek T., Asymptotic behavior to dissipative quasi-geostrophic flows, SIAM J. Math. Anal.35 (2003) 357-375. Zbl1126.76386MR2001105
  20. [20] Schonbek M., Schonbek T., Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows, Discrete Contin. Dyn. Syst.13 (2005) 1277-1304. Zbl1091.35070MR2166670
  21. [21] Wu J., The quasi-geostrophic equation and its two regularizations, Comm. Partial Differential Equations27 (2002) 1161-1181. Zbl1012.35067MR1916560
  22. [22] Wu J., Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces, SIAM J. Math. Anal.36 (2004/2005) 1014-1030. Zbl1083.76064MR2111923
  23. [23] Wu J., The quasi-geostrophic equation with critical or supercritical dissipation, Nonlinearity18 (2005) 139-154. Zbl1067.35002MR2109471
  24. [24] Wu J., Existence and uniqueness results for the 2-D dissipative quasi-geostrophic equation, Nonlinear Anal.67 (2007) 3013-3036. Zbl1122.76014MR2347594

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.