Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 1, page 159-180
- ISSN: 0294-1449
Access Full Article
topHow to cite
topConstantin, Peter, and Wu, Jiahong. "Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations." Annales de l'I.H.P. Analyse non linéaire 26.1 (2009): 159-180. <http://eudml.org/doc/78833>.
@article{Constantin2009,
author = {Constantin, Peter, Wu, Jiahong},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quasi-geostrophic equations; Leray-Hopf weak solutions; Besov space},
language = {eng},
number = {1},
pages = {159-180},
publisher = {Elsevier},
title = {Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations},
url = {http://eudml.org/doc/78833},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Constantin, Peter
AU - Wu, Jiahong
TI - Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 1
SP - 159
EP - 180
LA - eng
KW - quasi-geostrophic equations; Leray-Hopf weak solutions; Besov space
UR - http://eudml.org/doc/78833
ER -
References
top- [1] Caffarelli L., Silvestre L., An extension problem related to the fractional Laplacian, arXiv:math.AP/0608640. Zbl1143.26002
- [2] Caffarelli L., Vasseur A., Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, arXiv:math.AP/0608447. Zbl1204.35063
- [3] Chae D., On the regularity conditions for the dissipative quasi-geostrophic equations, SIAM J. Math. Anal.37 (2006) 1649-1656. Zbl1141.76010MR2215601
- [4] Chae D., Lee J., Global well-posedness in the super-critical dissipative quasi-geostrophic equations, Commun. Math. Phys.233 (2003) 297-311. Zbl1019.86002MR1962043
- [5] Chen Q., Miao C., Zhang Z., A new Bernstein inequality and the 2D dissipative quasi-geostrophic equation, Commun. Math. Phys.271 (2007) 821-838. Zbl1142.35069MR2291797
- [6] Constantin P., Euler equations, Navier–Stokes equations and turbulence. Mathematical Foundation of Turbulent Viscous Flows, in: Lecture Notes in Math., vol. 1871, Springer, Berlin, 2006, pp. 1-43. Zbl1190.76146MR2196360
- [7] Constantin P., Cordoba D., Wu J., On the critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J.50 (2001) 97-107. Zbl0989.86004MR1855665
- [8] Constantin P., Majda A., Tabak E., Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar, Nonlinearity7 (1994) 1495-1533. Zbl0809.35057MR1304437
- [9] Constantin P., Wu J., Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal.30 (1999) 937-948. Zbl0957.76093MR1709781
- [10] Constantin P., Wu J., Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire25 (6) (2008) 1103-1110. Zbl1149.76052MR2466323
- [11] Córdoba A., Córdoba D., A maximum principle applied to quasi-geostrophic equations, Commun. Math. Phys.249 (2004) 511-528. Zbl1309.76026MR2084005
- [12] Held I., Pierrehumbert R., Garner S., Swanson K., Surface quasi-geostrophic dynamics, J. Fluid Mech.282 (1995) 1-20. Zbl0832.76012MR1312238
- [13] T. Hmidi, S. Keraani, On the global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces, Adv. Math., in press. Zbl1119.76070MR2349714
- [14] Ju N., The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations, Commun. Math. Phys.255 (2005) 161-181. Zbl1088.37049MR2123380
- [15] Kiselev A., Nazarov F., Volberg A., Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math.167 (2007) 445-453. Zbl1121.35115MR2276260
- [16] Marchand F., Lemarié-Rieusset P.G., Solutions auto-similaires non radiales pour l'équation quasi-géostrophique dissipative critique, C. R. Math. Acad. Sci. Paris, Ser. I341 (2005) 535-538. Zbl1155.76320MR2181389
- [17] Pedlosky J., Geophysical Fluid Dynamics, Springer, New York, 1987. Zbl0713.76005
- [18] S. Resnick, Dynamical problems in nonlinear advective partial differential equations, Ph.D. thesis, University of Chicago, 1995.
- [19] Schonbek M., Schonbek T., Asymptotic behavior to dissipative quasi-geostrophic flows, SIAM J. Math. Anal.35 (2003) 357-375. Zbl1126.76386MR2001105
- [20] Schonbek M., Schonbek T., Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows, Discrete Contin. Dyn. Syst.13 (2005) 1277-1304. Zbl1091.35070MR2166670
- [21] Wu J., The quasi-geostrophic equation and its two regularizations, Comm. Partial Differential Equations27 (2002) 1161-1181. Zbl1012.35067MR1916560
- [22] Wu J., Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces, SIAM J. Math. Anal.36 (2004/2005) 1014-1030. Zbl1083.76064MR2111923
- [23] Wu J., The quasi-geostrophic equation with critical or supercritical dissipation, Nonlinearity18 (2005) 139-154. Zbl1067.35002MR2109471
- [24] Wu J., Existence and uniqueness results for the 2-D dissipative quasi-geostrophic equation, Nonlinear Anal.67 (2007) 3013-3036. Zbl1122.76014MR2347594
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.