Transverse nonlinear instability for two-dimensional dispersive models

F. Rousset; N. Tzvetkov

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 2, page 477-496
  • ISSN: 0294-1449

How to cite

top

Rousset, F., and Tzvetkov, N.. "Transverse nonlinear instability for two-dimensional dispersive models." Annales de l'I.H.P. Analyse non linéaire 26.2 (2009): 477-496. <http://eudml.org/doc/78852>.

@article{Rousset2009,
author = {Rousset, F., Tzvetkov, N.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear instability; solitary waves; dispersive equations; Korteweg-de Vries equation; nonlinear Schrödinger equation},
language = {eng},
number = {2},
pages = {477-496},
publisher = {Elsevier},
title = {Transverse nonlinear instability for two-dimensional dispersive models},
url = {http://eudml.org/doc/78852},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Rousset, F.
AU - Tzvetkov, N.
TI - Transverse nonlinear instability for two-dimensional dispersive models
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 2
SP - 477
EP - 496
LA - eng
KW - nonlinear instability; solitary waves; dispersive equations; Korteweg-de Vries equation; nonlinear Schrödinger equation
UR - http://eudml.org/doc/78852
ER -

References

top
  1. [1] C Alexander J., Pego R.L., Sachs R.L., On the transverse instability of solitary waves in the Kadomtsev–Petviashvili equation, Phys. Lett. A226 (1997) 187-192. Zbl0962.35505MR1435907
  2. [2] Benjamin T., The stability of solitary waves, Proc. London Math. Soc. (3)328 (1972) 153-183. MR338584
  3. [3] K. Blyuss, T. Bridges, G. Derks, Transverse instability and its long-term development for solitary waves of the ( 2 + 1 ) -Boussinesq equation, Preprint, 2002. 
  4. [4] Bona J., Sachs R., Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation, Comm. Math. Phys.118 (1988) 15-29. Zbl0654.35018MR954673
  5. [5] Burq N., Gérard P., Tzvetkov N., Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geom. Funct. Anal.13 (2003) 1-19. Zbl1044.35084MR1978490
  6. [6] Cazenave T., Lions P.L., Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys.85 (1982) 549-561. Zbl0513.35007MR677997
  7. [7] Coppel W.A., Dichotomies in Stability Theory, Lecture Notes in Mathematics, vol. 629, Springer-Verlag, Berlin, 1978. Zbl0376.34001MR481196
  8. [8] Friedlander S., Strauss W., Vishik M., Nonlinear instability in an ideal fluid, Ann. Inst. H. Poincaré14 (1997) 187-209. Zbl0874.76026MR1441392
  9. [9] Friedlander S., Vishik M., Nonlinear instability in two-dimensional ideal fluids: The case of a dominant eigenvalue, Comm. Math. Phys.243 (2003) 261-273. Zbl1043.76025MR2021907
  10. [10] Grenier E., On the nonlinear instability of Euler and Prandtl equations, Comm. Pure Appl. Math.53 (2000) 1067-1091. Zbl1048.35081MR1761409
  11. [11] Guo Y., Strauss W.A., Instability of periodic BGK equilibria, Comm. Pure Appl. Math.48 (1995) 861-894. Zbl0840.45012MR1361017
  12. [12] Henry D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, 1981. Zbl0456.35001MR610244
  13. [13] A. Ionescu, C. Kenig, Local and global well-posedness of periodic KP-I equations, Preprint, 2005. MR2150876
  14. [14] Janssen P., Rasmussen J., Nonlinear evolution of the transverse instability of plane envelope solitons, Phys. Fluids26 (1983) 1279-1287. Zbl0521.76024MR717346
  15. [15] Kadomtsev B.B., Petviashvili V.I., On the stability of solitary waves in weakly dispersive media, Soviet Phys. Dokl.15 (1970) 539-541. Zbl0217.25004
  16. [16] Kato T., Perturbation Theory for Linear Operators, Classics in Mathematics, Reprint of the 1980 edition, Springer-Verlag, Berlin, 1995. Zbl0836.47009MR1335452
  17. [17] Kenig C., Ponce G., Vega L., Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Comm. Pure Appl. Math.46 (1993) 527-629. Zbl0808.35128MR1211741
  18. [18] Koch H., Tzvetkov N., On finite energy solutions for the KP-I equation, Math. Z.256 (2008) 55-68. Zbl05218251MR2350033
  19. [19] Liu Y., Strong instability of solitary wave solutions to a Kadomtsev–Petviashvili equation in three dimensions, J. Differential Equations (2002) 153-170. Zbl1061.35115MR1890602
  20. [20] Merle F., Vega L., L 2 stability of solitons for KdV equation, Int. Math. Res. Notices13 (2003) 735-753. Zbl1022.35061MR1949297
  21. [21] Pego R., Weinstein M., Eigenvalues, and instabilities of solitary waves, Philos. Trans. Roy. Soc. London A340 (1992) 47-97. Zbl0776.35065MR1177566
  22. [22] Saut J.-C., Remarks on the generalized Kadomtsev–Petviashvili equations, Indiana Univ. Math. J.42 (1993) 1011-1026. Zbl0814.35119MR1254130
  23. [23] Takaoka H., Tzvetkov N., On 2D nonlinear Schrödinger equations with data on R × T , J. Funct. Anal.182 (2001) 427-442. Zbl0976.35085MR1828800
  24. [24] Titchmarch E.C., Eigenfunction Expansions Associated to Second Order Differential Equations, Clarendon Press, Oxford, 1946. Zbl0061.13505MR19765
  25. [25] Weinstein M., Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal.16 (1985) 472-491. Zbl0583.35028MR783974
  26. [26] Zakharov V.E., Instability and nonlinear oscillations of solitons, JETP Lett.22 (1975) 172-173. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.