Large solutions for the laplacian with a power nonlinearity given by a variable exponent
Jorge García-Melián; Julio D. Rossi; José C. Sabina de Lis
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 3, page 889-902
- ISSN: 0294-1449
Access Full Article
topHow to cite
topGarcía-Melián, Jorge, Rossi, Julio D., and Sabina de Lis, José C.. "Large solutions for the laplacian with a power nonlinearity given by a variable exponent." Annales de l'I.H.P. Analyse non linéaire 26.3 (2009): 889-902. <http://eudml.org/doc/78872>.
@article{García2009,
author = {García-Melián, Jorge, Rossi, Julio D., Sabina de Lis, José C.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {large solutions; existence; uniqueness; variable exponents; Laplacian},
language = {eng},
number = {3},
pages = {889-902},
publisher = {Elsevier},
title = {Large solutions for the laplacian with a power nonlinearity given by a variable exponent},
url = {http://eudml.org/doc/78872},
volume = {26},
year = {2009},
}
TY - JOUR
AU - García-Melián, Jorge
AU - Rossi, Julio D.
AU - Sabina de Lis, José C.
TI - Large solutions for the laplacian with a power nonlinearity given by a variable exponent
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 3
SP - 889
EP - 902
LA - eng
KW - large solutions; existence; uniqueness; variable exponents; Laplacian
UR - http://eudml.org/doc/78872
ER -
References
top- [1] Amann H., On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J.21 (1971/72) 125-146. Zbl0219.35037MR296498
- [2] Bandle C., Marcus M., Sur les solutions maximales de problèmes elliptiques non linéaires : bornes isopérimetriques et comportement asymptotique, C. R. Acad. Sci. Paris Sér. I Math.311 (1990) 91-93. Zbl0726.35041MR1065436
- [3] Bandle C., Marcus M., ‘Large’ solutions of semilinear elliptic equations: Existence, uniqueness and asymptotic behaviour, J. Anal. Math.58 (1992) 9-24. Zbl0802.35038MR1226934
- [4] Bieberbach L., und die automorphen Funktionen, Math. Ann.77 (1916) 173-212. MR1511854
- [5] Chuaqui M., Cortázar C., Elgueta M., Flores C., García-Melián J., Letelier R., On an elliptic problem with boundary blow-up and a singular weight: the radial case, Proc. Roy. Soc. Edinburgh Sect. A133 (2003) 1283-1297. Zbl1039.35036MR2027646
- [6] Chuaqui M., Cortázar C., Elgueta M., García-Melián J., Uniqueness and boundary behaviour of large solutions to elliptic problems with singular weights, Comm. Pure Appl. Anal.3 (2004) 653-662. Zbl1174.35386MR2106305
- [7] Del Pino M., Letelier R., The influence of domain geometry in boundary blow-up elliptic problems, Nonlinear Anal.48 (6) (2002) 897-904. Zbl1142.35431MR1879080
- [8] Delgado M., Lopez-Gomez J., Suárez A., Characterizing the existence of large solutions for a class of sublinear problems with nonlinear diffusion, Adv. Differential Equations7 (2002) 1235-1256. Zbl1207.35133MR1919703
- [9] Delgado M., Lopez-Gomez J., Suárez A., Combining linear and nonlinear diffusion, Adv. Nonlinear Stud.4 (2004) 273-287. Zbl1142.35407MR2079815
- [10] Delgado M., Lopez-Gomez J., Suárez A., Singular boundary value problems of a porous media logistic equation, Hiroshima Math. J.34 (2004) 57-80. Zbl1112.35065MR2046453
- [11] Díaz G., Letelier R., Explosive solutions of quasilinear elliptic equations: Existence and uniqueness, Nonlinear Anal.20 (1993) 97-125. Zbl0793.35028MR1200384
- [12] Du Y., Huang Q., Blow-up solutions for a class of semilinear elliptic and parabolic equations, SIAM J. Math. Anal.31 (1999) 1-18. Zbl0959.35065MR1720128
- [13] Dumont S., Dupaigne L., Goubet O., Rădulescu V., Back to the Keller–Osserman condition for boundary blow-up solutions, Adv. Nonlinear Stud.7 (2007) 271-298. Zbl1137.35030MR2308040
- [14] García-Melián J., Nondegeneracy and uniqueness for boundary blow-up elliptic problems, J. Differential Equations223 (2006) 208-227. Zbl1170.35405MR2210144
- [15] García-Melián J., Uniqueness for boundary blow-up problems with continuous weights, Proc. Amer. Math. Soc.135 (2007) 2785-2793. Zbl1146.35036MR2317953
- [16] García-Melián J., Letelier-Albornoz R., Sabina de Lis J., Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up, Proc. Amer. Math. Soc.129 (12) (2001) 3593-3602. Zbl0989.35044MR1860492
- [17] Keller J.B., On solutions of , Comm. Pure Appl. Math.10 (1957) 503-510. Zbl0090.31801MR91407
- [18] Kondrat'ev V.A., Nikishkin V.A., Asymptotics, near the boundary, of a solution of a singular boundary value problem for a semilinear elliptic equation, Differential Equations26 (1990) 345-348. Zbl0706.35054MR1053773
- [19] Lair A., Wood A.W., Large solutions of sublinear elliptic equations, Nonlinear Anal.39 (2000) 745-753. Zbl0942.35074MR1733126
- [20] Loewner C., Nirenberg L., Partial differential equations invariant under conformal of projective transformations, in: Contributions to Analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 245-272. Zbl0298.35018MR358078
- [21] Lopez-Gomez J., Varying stoichometric exponents I: Classical steady states and metasolutions, Adv. Nonlinear Stud.3 (2003) 327-354. Zbl1081.35010MR1989742
- [22] Lopez-Gomez J., Suárez A., Combining fast, linear and slow diffusion, Topol. Methods Nonlinear Anal.23 (2004) 275-300. Zbl1129.35310MR2078193
- [23] Marcus M., Véron L., Uniqueness and asymptotic behaviour of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire14 (2) (1997) 237-274. Zbl0877.35042MR1441394
- [24] Mohammed M., Porcu G., Porru G., Large solutions to some non-linear O.D.E. with singular coefficients, Nonlinear Anal.47 (2001) 513-524. Zbl1042.34534MR1970670
- [25] Osserman R., On the inequality , Pacific J. Math.7 (1957) 1641-1647. Zbl0083.09402MR98239
- [26] Rădulescu V., Singular phenomena in nonlinear elliptic problems: from boundary blow-up solutions to equations with singular nonlinearities, in: Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 4, 2007, pp. 483-591.
- [27] Véron L., Semilinear elliptic equations with uniform blowup on the boundary, J. Anal. Math.59 (1992) 231-250. Zbl0802.35042MR1226963
- [28] Zhang Z., A remark on the existence of explosive solutions for a class of semilinear elliptic equations, Nonlinear Anal.41 (2000) 143-148. Zbl0964.35053MR1759143
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.