Large solutions for the laplacian with a power nonlinearity given by a variable exponent

Jorge García-Melián; Julio D. Rossi; José C. Sabina de Lis

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 3, page 889-902
  • ISSN: 0294-1449

How to cite

top

García-Melián, Jorge, Rossi, Julio D., and Sabina de Lis, José C.. "Large solutions for the laplacian with a power nonlinearity given by a variable exponent." Annales de l'I.H.P. Analyse non linéaire 26.3 (2009): 889-902. <http://eudml.org/doc/78872>.

@article{García2009,
author = {García-Melián, Jorge, Rossi, Julio D., Sabina de Lis, José C.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {large solutions; existence; uniqueness; variable exponents; Laplacian},
language = {eng},
number = {3},
pages = {889-902},
publisher = {Elsevier},
title = {Large solutions for the laplacian with a power nonlinearity given by a variable exponent},
url = {http://eudml.org/doc/78872},
volume = {26},
year = {2009},
}

TY - JOUR
AU - García-Melián, Jorge
AU - Rossi, Julio D.
AU - Sabina de Lis, José C.
TI - Large solutions for the laplacian with a power nonlinearity given by a variable exponent
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 3
SP - 889
EP - 902
LA - eng
KW - large solutions; existence; uniqueness; variable exponents; Laplacian
UR - http://eudml.org/doc/78872
ER -

References

top
  1. [1] Amann H., On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J.21 (1971/72) 125-146. Zbl0219.35037MR296498
  2. [2] Bandle C., Marcus M., Sur les solutions maximales de problèmes elliptiques non linéaires : bornes isopérimetriques et comportement asymptotique, C. R. Acad. Sci. Paris Sér. I Math.311 (1990) 91-93. Zbl0726.35041MR1065436
  3. [3] Bandle C., Marcus M., ‘Large’ solutions of semilinear elliptic equations: Existence, uniqueness and asymptotic behaviour, J. Anal. Math.58 (1992) 9-24. Zbl0802.35038MR1226934
  4. [4] Bieberbach L., Δ u = e u und die automorphen Funktionen, Math. Ann.77 (1916) 173-212. MR1511854
  5. [5] Chuaqui M., Cortázar C., Elgueta M., Flores C., García-Melián J., Letelier R., On an elliptic problem with boundary blow-up and a singular weight: the radial case, Proc. Roy. Soc. Edinburgh Sect. A133 (2003) 1283-1297. Zbl1039.35036MR2027646
  6. [6] Chuaqui M., Cortázar C., Elgueta M., García-Melián J., Uniqueness and boundary behaviour of large solutions to elliptic problems with singular weights, Comm. Pure Appl. Anal.3 (2004) 653-662. Zbl1174.35386MR2106305
  7. [7] Del Pino M., Letelier R., The influence of domain geometry in boundary blow-up elliptic problems, Nonlinear Anal.48 (6) (2002) 897-904. Zbl1142.35431MR1879080
  8. [8] Delgado M., Lopez-Gomez J., Suárez A., Characterizing the existence of large solutions for a class of sublinear problems with nonlinear diffusion, Adv. Differential Equations7 (2002) 1235-1256. Zbl1207.35133MR1919703
  9. [9] Delgado M., Lopez-Gomez J., Suárez A., Combining linear and nonlinear diffusion, Adv. Nonlinear Stud.4 (2004) 273-287. Zbl1142.35407MR2079815
  10. [10] Delgado M., Lopez-Gomez J., Suárez A., Singular boundary value problems of a porous media logistic equation, Hiroshima Math. J.34 (2004) 57-80. Zbl1112.35065MR2046453
  11. [11] Díaz G., Letelier R., Explosive solutions of quasilinear elliptic equations: Existence and uniqueness, Nonlinear Anal.20 (1993) 97-125. Zbl0793.35028MR1200384
  12. [12] Du Y., Huang Q., Blow-up solutions for a class of semilinear elliptic and parabolic equations, SIAM J. Math. Anal.31 (1999) 1-18. Zbl0959.35065MR1720128
  13. [13] Dumont S., Dupaigne L., Goubet O., Rădulescu V., Back to the Keller–Osserman condition for boundary blow-up solutions, Adv. Nonlinear Stud.7 (2007) 271-298. Zbl1137.35030MR2308040
  14. [14] García-Melián J., Nondegeneracy and uniqueness for boundary blow-up elliptic problems, J. Differential Equations223 (2006) 208-227. Zbl1170.35405MR2210144
  15. [15] García-Melián J., Uniqueness for boundary blow-up problems with continuous weights, Proc. Amer. Math. Soc.135 (2007) 2785-2793. Zbl1146.35036MR2317953
  16. [16] García-Melián J., Letelier-Albornoz R., Sabina de Lis J., Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up, Proc. Amer. Math. Soc.129 (12) (2001) 3593-3602. Zbl0989.35044MR1860492
  17. [17] Keller J.B., On solutions of Δ u = f u , Comm. Pure Appl. Math.10 (1957) 503-510. Zbl0090.31801MR91407
  18. [18] Kondrat'ev V.A., Nikishkin V.A., Asymptotics, near the boundary, of a solution of a singular boundary value problem for a semilinear elliptic equation, Differential Equations26 (1990) 345-348. Zbl0706.35054MR1053773
  19. [19] Lair A., Wood A.W., Large solutions of sublinear elliptic equations, Nonlinear Anal.39 (2000) 745-753. Zbl0942.35074MR1733126
  20. [20] Loewner C., Nirenberg L., Partial differential equations invariant under conformal of projective transformations, in: Contributions to Analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 245-272. Zbl0298.35018MR358078
  21. [21] Lopez-Gomez J., Varying stoichometric exponents I: Classical steady states and metasolutions, Adv. Nonlinear Stud.3 (2003) 327-354. Zbl1081.35010MR1989742
  22. [22] Lopez-Gomez J., Suárez A., Combining fast, linear and slow diffusion, Topol. Methods Nonlinear Anal.23 (2004) 275-300. Zbl1129.35310MR2078193
  23. [23] Marcus M., Véron L., Uniqueness and asymptotic behaviour of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire14 (2) (1997) 237-274. Zbl0877.35042MR1441394
  24. [24] Mohammed M., Porcu G., Porru G., Large solutions to some non-linear O.D.E. with singular coefficients, Nonlinear Anal.47 (2001) 513-524. Zbl1042.34534MR1970670
  25. [25] Osserman R., On the inequality Δ u f u , Pacific J. Math.7 (1957) 1641-1647. Zbl0083.09402MR98239
  26. [26] Rădulescu V., Singular phenomena in nonlinear elliptic problems: from boundary blow-up solutions to equations with singular nonlinearities, in: Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 4, 2007, pp. 483-591. 
  27. [27] Véron L., Semilinear elliptic equations with uniform blowup on the boundary, J. Anal. Math.59 (1992) 231-250. Zbl0802.35042MR1226963
  28. [28] Zhang Z., A remark on the existence of explosive solutions for a class of semilinear elliptic equations, Nonlinear Anal.41 (2000) 143-148. Zbl0964.35053MR1759143

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.