Strong convergence towards homogeneous cooling states for dissipative Maxwell models

Eric A. Carlen; José A. Carrillo; Maria C. Carvalho

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 5, page 1675-1700
  • ISSN: 0294-1449

How to cite

top

Carlen, Eric A., Carrillo, José A., and Carvalho, Maria C.. "Strong convergence towards homogeneous cooling states for dissipative Maxwell models." Annales de l'I.H.P. Analyse non linéaire 26.5 (2009): 1675-1700. <http://eudml.org/doc/78908>.

@article{Carlen2009,
author = {Carlen, Eric A., Carrillo, José A., Carvalho, Maria C.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {dissipative Maxwell models; propagation of regularity; long time asymptotics; self-similarity; strong convergence; small inelasticity limit},
language = {eng},
number = {5},
pages = {1675-1700},
publisher = {Elsevier},
title = {Strong convergence towards homogeneous cooling states for dissipative Maxwell models},
url = {http://eudml.org/doc/78908},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Carlen, Eric A.
AU - Carrillo, José A.
AU - Carvalho, Maria C.
TI - Strong convergence towards homogeneous cooling states for dissipative Maxwell models
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 5
SP - 1675
EP - 1700
LA - eng
KW - dissipative Maxwell models; propagation of regularity; long time asymptotics; self-similarity; strong convergence; small inelasticity limit
UR - http://eudml.org/doc/78908
ER -

References

top
  1. [1] Bisi M., Carrillo J.A., Toscani G., Contractive Metrics for a Boltzmann equation for granular gases: Diffusive equilibria, J. Statist. Phys.118 (2005) 301-331. Zbl1085.82008MR2122557
  2. [2] Bisi M., Carrillo J.A., Toscani G., Decay rates in probability metrics towards homogeneous cooling states for the inelastic Maxwell model, J. Statist. Phys.124 (2006) 625-653. Zbl1135.82028MR2264621
  3. [3] Bobylev A.V., Fourier transform method in the theory of the Boltzmann equation for Maxwellian molecules, Dokl. Akad. Nauk USSR225 (1975) 1041-1044. Zbl0361.76077MR398379
  4. [4] Bobylev A.V., The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, Sov. Sci. Rev. C. Math. Phys.7 (1988) 111-233. Zbl0850.76619MR1128328
  5. [5] Bobylev A.V., Carrillo J.A., Gamba I., On some properties of kinetic and hydrodynamic equations for inelastic interactions, J. Statist. Phys.98 (2000) 743-773, Erratum on:, J. Statist. Phys.103 (2001) 1137-1138. Zbl1126.82323MR1749231
  6. [6] Bobylev A.V., Cercignani C., Self-similar asymptotics for the Boltzmann equation with inelastic and elastic interactions, J. Statist. Phys.110 (2003) 333-375. Zbl1134.82324MR1966332
  7. [7] Bobylev A.V., Cercignani C., Gamba I., Generalized kinetic Maxwell models of granular gases, in: Capriz G., Giovine P., Mariano P.M. (Eds.), Mathematical Models of Granular Matter, Lecture Notes in Mathematics, vol. 1937, Springer, 2008. Zbl1298.76209MR2436467
  8. [8] A.V. Bobylev, C. Cercignani, I. Gamba, On the self-similar asymptotics for generalized non-linear kinetic Maxwell models, Comm. Math. Phys., in press. Zbl1192.35126
  9. [9] Bobylev A.V., Cercignani C., Toscani G., Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials, J. Statist. Phys.111 (2003) 403-417. Zbl1119.82318MR1964277
  10. [10] Bolley F., Carrillo J.A., Tanaka theorem for inelastic Maxwell models, Comm. Math. Phys.276 (2007) 287-314. Zbl1136.82033MR2346391
  11. [11] Carlen E.A., Carvalho M.C., Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation, J. Statist. Phys.67 (1992) 575-608. Zbl0899.76317MR1171145
  12. [12] Carlen E.A., Gabetta E., Toscani G., Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas, Comm. Math. Phys.305 (1999) 521-546. Zbl0927.76088MR1669689
  13. [13] Carrillo J.A., Toscani G., Contractive probability metrics and asymptotic behavior of dissipative kinetic equations, Riv. Mat. Univ. Parma6 (2007) 75-198. Zbl1142.82018MR2355628
  14. [14] Csiszar I., Information-type measures of difference of probability distributions and indirect observations, Stud. Sci. Math. Hung.2 (1967) 299-318. Zbl0157.25802MR219345
  15. [15] Desvillettes L., About the use of the Fourier transform for the Boltzmann equation, Riv. Mat. Univ. Parma7 (2003) 1-99. Zbl1072.35513MR2052786
  16. [16] Desvillettes L., Mouhot C., Large time behavior of the a priori bounds for the solutions to the spatially homogeneous Boltzmann equations with soft potentials, Asymptotic Anal.54 (2007) 235-245. Zbl1141.35337MR2359877
  17. [17] Ernst M.H., Brito R., High energy tails for inelastic Maxwell models, Europhys. Lett.58 (2002) 182-187. 
  18. [18] Ernst M.H., Brito R., Scaling solutions of inelastic Boltzmann equation with over-populated high energy tails, J. Statist. Phys.109 (2002) 407-432. Zbl1015.82030MR1942001
  19. [19] Gamba I., Panferov V., Villani C., On the Boltzmann equation for diffusively excited granular media, Comm. Math. Phys.246 (2004) 503-541. Zbl1106.82031MR2053942
  20. [20] Gross L., Logarithmic Sobolev inequalities, Amer. J. Math.97 (1975) 1061-1083. Zbl0318.46049MR420249
  21. [21] Kullback S., Leibler R.A., On information and sufficiency, Ann. Math. Statist.22 (1951) 79-86. Zbl0042.38403MR39968
  22. [22] Lions P.L., Toscani G., A strenghtened central limit theorem for smooth densities, J. Funct. Anal.128 (1995) 148-167. Zbl0822.60018MR1322646
  23. [23] Mischler S., Mouhot C., Rodríguez Ricard M., Cooling process for inelastic Boltzmann equations for hard spheres, Part I: The Cauchy problem, J. Statist. Phys.124 (2006) 655-702. Zbl1135.82325MR2264622
  24. [24] Mischler S., Mouhot C., Cooling process for inelastic Boltzmann equations for hard spheres, Part II: Self-similar solution and tail behavior, J. Statist. Phys.124 (2006) 655-702. Zbl1135.82325MR2264622
  25. [25] Mischler S., Mouhot C., Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres, preprint, arXiv:math.AP/0701449. Zbl1178.82056MR2500990
  26. [26] Mischler S., Mouhot C., Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited inelastic hard spheres, preprint, arXiv:0712.0124v1[math.AP]. Zbl1160.76042
  27. [27] Toscani G., Sur l'inégalité logarithmique de Sobolev, C. R. Acad. Sci. Paris, Sér. 1324 (1997) 689-694. Zbl0905.46018MR1447044
  28. [28] Villani C., Fisher information estimates for Boltzmann's collision operator, J. Math. Pures Appl.77 (1998) 821-837. Zbl0918.60093MR1646804
  29. [29] Villani C., Mathematics of granular materials, J. Statist. Phys.124 (2006) 781-822. Zbl1134.82040MR2264625
  30. [30] Zhang X., Regularity and long time behavior of the Boltzmann equation for granular gases, J. Math. Anal. Appl.324 (2006) 650-662. Zbl1104.35008MR2262498

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.