Strong convergence towards homogeneous cooling states for dissipative Maxwell models
Eric A. Carlen; José A. Carrillo; Maria C. Carvalho
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 5, page 1675-1700
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCarlen, Eric A., Carrillo, José A., and Carvalho, Maria C.. "Strong convergence towards homogeneous cooling states for dissipative Maxwell models." Annales de l'I.H.P. Analyse non linéaire 26.5 (2009): 1675-1700. <http://eudml.org/doc/78908>.
@article{Carlen2009,
author = {Carlen, Eric A., Carrillo, José A., Carvalho, Maria C.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {dissipative Maxwell models; propagation of regularity; long time asymptotics; self-similarity; strong convergence; small inelasticity limit},
language = {eng},
number = {5},
pages = {1675-1700},
publisher = {Elsevier},
title = {Strong convergence towards homogeneous cooling states for dissipative Maxwell models},
url = {http://eudml.org/doc/78908},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Carlen, Eric A.
AU - Carrillo, José A.
AU - Carvalho, Maria C.
TI - Strong convergence towards homogeneous cooling states for dissipative Maxwell models
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 5
SP - 1675
EP - 1700
LA - eng
KW - dissipative Maxwell models; propagation of regularity; long time asymptotics; self-similarity; strong convergence; small inelasticity limit
UR - http://eudml.org/doc/78908
ER -
References
top- [1] Bisi M., Carrillo J.A., Toscani G., Contractive Metrics for a Boltzmann equation for granular gases: Diffusive equilibria, J. Statist. Phys.118 (2005) 301-331. Zbl1085.82008MR2122557
- [2] Bisi M., Carrillo J.A., Toscani G., Decay rates in probability metrics towards homogeneous cooling states for the inelastic Maxwell model, J. Statist. Phys.124 (2006) 625-653. Zbl1135.82028MR2264621
- [3] Bobylev A.V., Fourier transform method in the theory of the Boltzmann equation for Maxwellian molecules, Dokl. Akad. Nauk USSR225 (1975) 1041-1044. Zbl0361.76077MR398379
- [4] Bobylev A.V., The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, Sov. Sci. Rev. C. Math. Phys.7 (1988) 111-233. Zbl0850.76619MR1128328
- [5] Bobylev A.V., Carrillo J.A., Gamba I., On some properties of kinetic and hydrodynamic equations for inelastic interactions, J. Statist. Phys.98 (2000) 743-773, Erratum on:, J. Statist. Phys.103 (2001) 1137-1138. Zbl1126.82323MR1749231
- [6] Bobylev A.V., Cercignani C., Self-similar asymptotics for the Boltzmann equation with inelastic and elastic interactions, J. Statist. Phys.110 (2003) 333-375. Zbl1134.82324MR1966332
- [7] Bobylev A.V., Cercignani C., Gamba I., Generalized kinetic Maxwell models of granular gases, in: Capriz G., Giovine P., Mariano P.M. (Eds.), Mathematical Models of Granular Matter, Lecture Notes in Mathematics, vol. 1937, Springer, 2008. Zbl1298.76209MR2436467
- [8] A.V. Bobylev, C. Cercignani, I. Gamba, On the self-similar asymptotics for generalized non-linear kinetic Maxwell models, Comm. Math. Phys., in press. Zbl1192.35126
- [9] Bobylev A.V., Cercignani C., Toscani G., Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials, J. Statist. Phys.111 (2003) 403-417. Zbl1119.82318MR1964277
- [10] Bolley F., Carrillo J.A., Tanaka theorem for inelastic Maxwell models, Comm. Math. Phys.276 (2007) 287-314. Zbl1136.82033MR2346391
- [11] Carlen E.A., Carvalho M.C., Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation, J. Statist. Phys.67 (1992) 575-608. Zbl0899.76317MR1171145
- [12] Carlen E.A., Gabetta E., Toscani G., Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas, Comm. Math. Phys.305 (1999) 521-546. Zbl0927.76088MR1669689
- [13] Carrillo J.A., Toscani G., Contractive probability metrics and asymptotic behavior of dissipative kinetic equations, Riv. Mat. Univ. Parma6 (2007) 75-198. Zbl1142.82018MR2355628
- [14] Csiszar I., Information-type measures of difference of probability distributions and indirect observations, Stud. Sci. Math. Hung.2 (1967) 299-318. Zbl0157.25802MR219345
- [15] Desvillettes L., About the use of the Fourier transform for the Boltzmann equation, Riv. Mat. Univ. Parma7 (2003) 1-99. Zbl1072.35513MR2052786
- [16] Desvillettes L., Mouhot C., Large time behavior of the a priori bounds for the solutions to the spatially homogeneous Boltzmann equations with soft potentials, Asymptotic Anal.54 (2007) 235-245. Zbl1141.35337MR2359877
- [17] Ernst M.H., Brito R., High energy tails for inelastic Maxwell models, Europhys. Lett.58 (2002) 182-187.
- [18] Ernst M.H., Brito R., Scaling solutions of inelastic Boltzmann equation with over-populated high energy tails, J. Statist. Phys.109 (2002) 407-432. Zbl1015.82030MR1942001
- [19] Gamba I., Panferov V., Villani C., On the Boltzmann equation for diffusively excited granular media, Comm. Math. Phys.246 (2004) 503-541. Zbl1106.82031MR2053942
- [20] Gross L., Logarithmic Sobolev inequalities, Amer. J. Math.97 (1975) 1061-1083. Zbl0318.46049MR420249
- [21] Kullback S., Leibler R.A., On information and sufficiency, Ann. Math. Statist.22 (1951) 79-86. Zbl0042.38403MR39968
- [22] Lions P.L., Toscani G., A strenghtened central limit theorem for smooth densities, J. Funct. Anal.128 (1995) 148-167. Zbl0822.60018MR1322646
- [23] Mischler S., Mouhot C., Rodríguez Ricard M., Cooling process for inelastic Boltzmann equations for hard spheres, Part I: The Cauchy problem, J. Statist. Phys.124 (2006) 655-702. Zbl1135.82325MR2264622
- [24] Mischler S., Mouhot C., Cooling process for inelastic Boltzmann equations for hard spheres, Part II: Self-similar solution and tail behavior, J. Statist. Phys.124 (2006) 655-702. Zbl1135.82325MR2264622
- [25] Mischler S., Mouhot C., Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres, preprint, arXiv:math.AP/0701449. Zbl1178.82056MR2500990
- [26] Mischler S., Mouhot C., Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited inelastic hard spheres, preprint, arXiv:0712.0124v1[math.AP]. Zbl1160.76042
- [27] Toscani G., Sur l'inégalité logarithmique de Sobolev, C. R. Acad. Sci. Paris, Sér. 1324 (1997) 689-694. Zbl0905.46018MR1447044
- [28] Villani C., Fisher information estimates for Boltzmann's collision operator, J. Math. Pures Appl.77 (1998) 821-837. Zbl0918.60093MR1646804
- [29] Villani C., Mathematics of granular materials, J. Statist. Phys.124 (2006) 781-822. Zbl1134.82040MR2264625
- [30] Zhang X., Regularity and long time behavior of the Boltzmann equation for granular gases, J. Math. Anal. Appl.324 (2006) 650-662. Zbl1104.35008MR2262498
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.