Approximate controllability for a system of Schrödinger equations modeling a single trapped ion

Sylvain Ervedoza; Jean-Pierre Puel

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 6, page 2111-2136
  • ISSN: 0294-1449

How to cite

top

Ervedoza, Sylvain, and Puel, Jean-Pierre. "Approximate controllability for a system of Schrödinger equations modeling a single trapped ion." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2111-2136. <http://eudml.org/doc/78927>.

@article{Ervedoza2009,
author = {Ervedoza, Sylvain, Puel, Jean-Pierre},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {approximate controllability; bilinear control; mathematical physics; system of Schrödinger equations; Law-Eberly equations},
language = {eng},
number = {6},
pages = {2111-2136},
publisher = {Elsevier},
title = {Approximate controllability for a system of Schrödinger equations modeling a single trapped ion},
url = {http://eudml.org/doc/78927},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Ervedoza, Sylvain
AU - Puel, Jean-Pierre
TI - Approximate controllability for a system of Schrödinger equations modeling a single trapped ion
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2111
EP - 2136
LA - eng
KW - approximate controllability; bilinear control; mathematical physics; system of Schrödinger equations; Law-Eberly equations
UR - http://eudml.org/doc/78927
ER -

References

top
  1. [1] R. Adami, U. Boscain, Controllability of the Schroedinger equation via intersection of eigenvalues, in: Proc. of the 44rd IEEE Conf. on Decision and Control, 2005. 
  2. [2] Ball J.M., Marsden J.E., Slemrod M., Controllability for distributed bilinear systems, SIAM J. Control Optim.20 (4) (1982) 575-597. Zbl0485.93015MR661034
  3. [3] Baudouin L., A bilinear optimal control problem applied to a time dependent Hartree–Fock equation coupled with classical nuclear dynamics, Portugal Math. (N.S.)63 (3) (2006) 293-325. Zbl1109.49003MR2254931
  4. [4] Baudouin L., Kavian O., Puel J.-P., Regularity for a Schrödinger equation with singular potentials and application to bilinear optimal control, J. Differential Equations216 (1) (2005) 188-222. Zbl1109.35094MR2158922
  5. [5] Baudouin L., Salomon J., Constructive solution of a bilinear control problem, C. R. Math. Acad. Sci. Paris, Ser. I342 (2) (2006) 119-124. Zbl1079.49021MR2193658
  6. [6] Beauchard K., Local controllability of a 1-D Schrödinger equation, J. Math. Pures Appl. (9)84 (7) (2005) 851-956. Zbl1124.93009MR2144647
  7. [7] Beauchard K., Controllability of a quantum particle in a 1D variable domain, ESAIM Control Optim. Calc. Var.14 (1) (2008) 105-147. Zbl1132.35446MR2375753
  8. [8] Beauchard K., Coron J.-M., Controllability of a quantum particle in a moving potential well, J. Funct. Anal.232 (2) (2006) 328-389. Zbl1188.93017MR2200740
  9. [9] Beauchard K., Coron J.-M., Mirrahimi M., Rouchon P., Implicit Lyapunov control of finite dimensional Schrödinger equations, Systems Control Lett.56 (5) (2007) 388-395. Zbl1110.81063MR2311201
  10. [10] K. Beauchard, M. Mirrahimi, Approximate stabilization of a quantum particle in a 1D infinite potential well, in: IFAC World Congress, Seoul, 2008. Zbl1194.93176
  11. [11] A.M. Bloch, R.W. Brockett, C. Rangan, The controllability of infinite quantum systems and closed subspace criteria, IEEE Trans. Automat. Control, submitted for publication. 
  12. [12] Brezis H., Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983, Théorie et applications (Theory and applications). Zbl0511.46001MR697382
  13. [13] Chambrion T., Mason P., Sigalotti M., Boscain U., Controllability of the discrete-spectrum Schrödinger equation driven by an external field, Ann. Inst. H. Poincaré Anal. Non Linéaire26 (1) (2009) 329-349. Zbl1161.35049MR2483824
  14. [14] Coron J.-M., On the small-time local controllability of a quantum particle in a moving one-dimensional infinite square potential well, C. R. Acad. Sci. Paris, Ser. I342 (2) (2006) 103-108. Zbl1082.93002MR2193655
  15. [15] Coron J.-M., Control and Nonlinearity, Mathematical Surveys and Monographs, vol. 136, American Mathematical Society, Providence, RI, 2007. Zbl1140.93002MR2302744
  16. [16] Ito K., Kunisch K., Optimal bilinear control of an abstract Schrödinger equation, SIAM J. Control Optim.46 (1) (2007) 274-287, (electronic). Zbl1136.35089MR2299629
  17. [17] Law C.K., Eberly J.H., Arbitrary control of a quantum electromagnetic field, Phys. Rev. Lett.76 (7) (1996) 1055-1058. 
  18. [18] Mirrahimi M., Lyapunov control of a quantum particle in a decaying potential, Ann. Inst. H. Poincaré Anal. Non Linéaire26 (5) (2009) 1743-1765. Zbl1176.35169MR2566708
  19. [19] M. Mirrahimi, Lyapunov control of a particle in a finite quantum potential well, in: IEEE Conf. on Decision and Control, 2006. 
  20. [20] Mirrahimi M., Rouchon P., Controllability of quantum harmonic oscillators, IEEE Trans. Automat. Control49 (5) (2004) 745-747. MR2057808
  21. [21] Mirrahimi M., Rouchon P., Turinici G., Lyapunov control of bilinear Schrödinger equations, Automatica J. IFAC41 (11) (2005) 1987-1994. Zbl1125.93466MR2168664
  22. [22] V. Nersesyan, Growth of Sobolev norms and controllability of Schrödinger equation, Preprint, 2008. Zbl1180.93017MR2520519
  23. [23] Rangan C., Bloch A.M., Control of finite-dimensional quantum systems: application to a spin- 1 2 particle coupled with a finite quantum harmonic oscillator, J. Math. Phys.46 (3) (2005) 032106. Zbl1076.81010MR2125555
  24. [24] Reed M., Simon B., Methods of Modern Mathematical Physics. I. Functional Analysis, second ed., Academic Press Inc. (Harcourt Brace Jovanovich Publishers), New York, 1980. Zbl0459.46001MR751959
  25. [25] Rouchon P., Quantum systems and control, Arima9 (2008) 325-357. MR2507510
  26. [26] Turinici G., On the controllability of bilinear quantum systems, in: Mathematical Models and Methods for ab initio Quantum Chemistry, Lecture Notes in Chem., vol. 74, Springer, Berlin, 2000, pp. 75-92. Zbl1007.81019MR1855575
  27. [27] Turinici G., Rabitz H., Wavefunction controllability for finite-dimensional bilinear quantum systems, J. Phys. A36 (10) (2003) 2565-2576. Zbl1064.81558MR1967518

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.