On the uniqueness of weak solutions for the 3D Navier-Stokes equations

Qionglei Chen; Changxing Miao; Zhifei Zhang

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 6, page 2165-2180
  • ISSN: 0294-1449

How to cite

top

Chen, Qionglei, Miao, Changxing, and Zhang, Zhifei. "On the uniqueness of weak solutions for the 3D Navier-Stokes equations." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2165-2180. <http://eudml.org/doc/78929>.

@article{Chen2009,
author = {Chen, Qionglei, Miao, Changxing, Zhang, Zhifei},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Navier-Stokes equations; uniqueness; weak solution; Fourier localization; losing derivative estimates},
language = {eng},
number = {6},
pages = {2165-2180},
publisher = {Elsevier},
title = {On the uniqueness of weak solutions for the 3D Navier-Stokes equations},
url = {http://eudml.org/doc/78929},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Chen, Qionglei
AU - Miao, Changxing
AU - Zhang, Zhifei
TI - On the uniqueness of weak solutions for the 3D Navier-Stokes equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2165
EP - 2180
LA - eng
KW - Navier-Stokes equations; uniqueness; weak solution; Fourier localization; losing derivative estimates
UR - http://eudml.org/doc/78929
ER -

References

top
  1. [1] Beirão da Veiga H., A new regularity class for the Navier–Stokes equations in R n , Chinese Ann. Math. Ser. B16 (1995) 407-412. Zbl0837.35111MR1380578
  2. [2] Bony J.-M., Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup.14 (1981) 209-246. Zbl0495.35024MR631751
  3. [3] Cannone M., Chen Q., Miao C., A losing estimate for the ideal MHD equations with application to blow-up criterion, SIAM J. Math. Anal.38 (2007) 1847-1859. Zbl1126.76057MR2299432
  4. [4] Chen Q., Zhang Z., Space–time estimates in the Besov spaces and the Navier–Stokes equations, Methods Appl. Anal.13 (2006) 107-122. Zbl1185.35160MR2275874
  5. [5] Chemin J.-Y., Perfect Incompressible Fluids, Oxford University Press, New York, 1998. Zbl0927.76002MR1688875
  6. [6] Chemin J.-Y., Théorèmes d'unicité pour le système de Navier–Stokes tridimensionnel, J. Anal. Math.77 (1999) 27-50. Zbl0938.35125MR1753481
  7. [7] Chemin J.-Y., Lerner N., Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes, J. Differential Equations121 (1995) 314-328. Zbl0878.35089MR1354312
  8. [8] Cheskidov A., Shvydkoy R., On the regularity of weak solutions of the 3D Navier–Stokes equations in B , - 1 , arXiv:0708.3067v2[math.AP]. MR2564471
  9. [9] Danchin R., Estimates in Besov spaces for transport and transport–diffusion equations with almost Lipschitz coefficients, Rev. Mat. Iberoamericana21 (2005) 863-888. Zbl1098.35038MR2231013
  10. [10] Danchin R., Paicu M., Le Théorème de Leray et le Théorème de Fujita–Kato pour le système de Boussinesq partiellement visqueux, Bulletin de la Societe Mathematique de France136 (2008) 261-309. Zbl1162.35063MR2415344
  11. [11] Escauriaza L., Seregin G., Šverák V., L 3 , -solutions to the Navier–Stokes equations and backward uniqueness, Russian Math. Surveys58 (2003) 211-250. Zbl1064.35134MR1992563
  12. [12] Gallagher I., Planchon F., On global infinite energy solutions to the Navier–Stokes equations in two dimensions, Arch. Ration. Mech. Anal.161 (2002) 307-337. Zbl1027.35090MR1891170
  13. [13] Germain P., Multipliers, paramultipliers, and weak–strong uniqueness for the Navier–Stokes equations, J. Differential Equations226 (2006) 373-428. Zbl1104.35033MR2237686
  14. [14] Giga Y., Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier–Stokes system, J. Differential Equations62 (1986) 186-212. Zbl0577.35058MR833416
  15. [15] Kozono H., Sohr H., Remark on uniqueness of weak solutions to the Navier–Stokes equations, Analysis16 (1996) 255-271. Zbl0864.35082MR1403221
  16. [16] Kozono H., Taniuchi Y., Bilinear estimates in BMO and the Navier–Stokes equations, Math. Z.235 (2000) 173-194. Zbl0970.35099MR1785078
  17. [17] Kozono H., Ogawa T., Taniuchi Y., The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z.242 (2002) 251-278. Zbl1055.35087MR1980623
  18. [18] Kozono H., Shimada Y., Bilinear estimates in homogeneous Triebel–Lizorkin spaces and the Navier–Stokes equations, Math. Nachr.276 (2004) 63-74. Zbl1078.35087MR2100048
  19. [19] Lemarié-Rieusset P.G., Recent Developments in the Navier–Stokes Problem, Res. Notes Math., vol. 43, Chapman and Hall/CRC, 2002. Zbl1034.35093MR1938147
  20. [20] Lemarié-Rieusset P.G., Uniqueness for the Navier–Stokes problem: Remarks on a theorem of Jean-Yves Chemin, Nonlinearity20 (2007) 1475-1490. Zbl1129.35058MR2327134
  21. [21] Leray J., Sur le mouvement d'un liquids visqeux emplissant l'espace, Acta Math.63 (1934) 193-248. MR1555394JFM60.0726.05
  22. [22] Lin F.H., Zhang P., Zhang Z., On the global existence of smooth solution to the 2-D FENE dumbbell model, Comm. Math. Phys.277 (2008) 531-553. Zbl1143.82035MR2358294
  23. [23] Majda A.J., Bertozzi A.L., Vorticity and Incompressible Flow, Cambridge University Press, Cambridge, 2002. Zbl0983.76001MR1867882
  24. [24] Masmoudi N., Zhang P., Zhang Z., Global well-posedness for 2D polymeric fluid models and growth estimate, Physica D237 (2008) 1663-1675. Zbl1143.76356MR2454611
  25. [25] Prodi G., Un teorema di unicità per le equazioni di Navier–Stokes, Ann. Mat. Pura Appl.48 (1959) 173-182. Zbl0148.08202MR126088
  26. [26] Ribaud F., A remark on the uniqueness problem for the weak solutions of Navier–Stokes equations, Ann. Fac. Sci. Toulouse Math.11 (2002) 225-238. Zbl1046.35086MR1988463
  27. [27] Serrin J., The initial value problem for the Navier–Stokes equations, in: Langer R.E. (Ed.), Nonlinear Problems, University of Wisconsin Press, Madison, 1963, pp. 69-98. Zbl0115.08502MR150444
  28. [28] Stein E.M., Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, NJ, 1993. Zbl0821.42001MR1232192
  29. [29] Triebel H., Theory of Function Spaces, Monogr. Math., vol. 78, Birkhäuser-Verlag, Basel, 1983. Zbl0546.46027MR781540

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.