On the uniqueness of weak solutions for the 3D Navier-Stokes equations
Qionglei Chen; Changxing Miao; Zhifei Zhang
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 6, page 2165-2180
- ISSN: 0294-1449
Access Full Article
topHow to cite
topChen, Qionglei, Miao, Changxing, and Zhang, Zhifei. "On the uniqueness of weak solutions for the 3D Navier-Stokes equations." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2165-2180. <http://eudml.org/doc/78929>.
@article{Chen2009,
author = {Chen, Qionglei, Miao, Changxing, Zhang, Zhifei},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Navier-Stokes equations; uniqueness; weak solution; Fourier localization; losing derivative estimates},
language = {eng},
number = {6},
pages = {2165-2180},
publisher = {Elsevier},
title = {On the uniqueness of weak solutions for the 3D Navier-Stokes equations},
url = {http://eudml.org/doc/78929},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Chen, Qionglei
AU - Miao, Changxing
AU - Zhang, Zhifei
TI - On the uniqueness of weak solutions for the 3D Navier-Stokes equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2165
EP - 2180
LA - eng
KW - Navier-Stokes equations; uniqueness; weak solution; Fourier localization; losing derivative estimates
UR - http://eudml.org/doc/78929
ER -
References
top- [1] Beirão da Veiga H., A new regularity class for the Navier–Stokes equations in , Chinese Ann. Math. Ser. B16 (1995) 407-412. Zbl0837.35111MR1380578
- [2] Bony J.-M., Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup.14 (1981) 209-246. Zbl0495.35024MR631751
- [3] Cannone M., Chen Q., Miao C., A losing estimate for the ideal MHD equations with application to blow-up criterion, SIAM J. Math. Anal.38 (2007) 1847-1859. Zbl1126.76057MR2299432
- [4] Chen Q., Zhang Z., Space–time estimates in the Besov spaces and the Navier–Stokes equations, Methods Appl. Anal.13 (2006) 107-122. Zbl1185.35160MR2275874
- [5] Chemin J.-Y., Perfect Incompressible Fluids, Oxford University Press, New York, 1998. Zbl0927.76002MR1688875
- [6] Chemin J.-Y., Théorèmes d'unicité pour le système de Navier–Stokes tridimensionnel, J. Anal. Math.77 (1999) 27-50. Zbl0938.35125MR1753481
- [7] Chemin J.-Y., Lerner N., Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes, J. Differential Equations121 (1995) 314-328. Zbl0878.35089MR1354312
- [8] Cheskidov A., Shvydkoy R., On the regularity of weak solutions of the 3D Navier–Stokes equations in , arXiv:0708.3067v2[math.AP]. MR2564471
- [9] Danchin R., Estimates in Besov spaces for transport and transport–diffusion equations with almost Lipschitz coefficients, Rev. Mat. Iberoamericana21 (2005) 863-888. Zbl1098.35038MR2231013
- [10] Danchin R., Paicu M., Le Théorème de Leray et le Théorème de Fujita–Kato pour le système de Boussinesq partiellement visqueux, Bulletin de la Societe Mathematique de France136 (2008) 261-309. Zbl1162.35063MR2415344
- [11] Escauriaza L., Seregin G., Šverák V., -solutions to the Navier–Stokes equations and backward uniqueness, Russian Math. Surveys58 (2003) 211-250. Zbl1064.35134MR1992563
- [12] Gallagher I., Planchon F., On global infinite energy solutions to the Navier–Stokes equations in two dimensions, Arch. Ration. Mech. Anal.161 (2002) 307-337. Zbl1027.35090MR1891170
- [13] Germain P., Multipliers, paramultipliers, and weak–strong uniqueness for the Navier–Stokes equations, J. Differential Equations226 (2006) 373-428. Zbl1104.35033MR2237686
- [14] Giga Y., Solutions for semilinear parabolic equations in and regularity of weak solutions of the Navier–Stokes system, J. Differential Equations62 (1986) 186-212. Zbl0577.35058MR833416
- [15] Kozono H., Sohr H., Remark on uniqueness of weak solutions to the Navier–Stokes equations, Analysis16 (1996) 255-271. Zbl0864.35082MR1403221
- [16] Kozono H., Taniuchi Y., Bilinear estimates in BMO and the Navier–Stokes equations, Math. Z.235 (2000) 173-194. Zbl0970.35099MR1785078
- [17] Kozono H., Ogawa T., Taniuchi Y., The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z.242 (2002) 251-278. Zbl1055.35087MR1980623
- [18] Kozono H., Shimada Y., Bilinear estimates in homogeneous Triebel–Lizorkin spaces and the Navier–Stokes equations, Math. Nachr.276 (2004) 63-74. Zbl1078.35087MR2100048
- [19] Lemarié-Rieusset P.G., Recent Developments in the Navier–Stokes Problem, Res. Notes Math., vol. 43, Chapman and Hall/CRC, 2002. Zbl1034.35093MR1938147
- [20] Lemarié-Rieusset P.G., Uniqueness for the Navier–Stokes problem: Remarks on a theorem of Jean-Yves Chemin, Nonlinearity20 (2007) 1475-1490. Zbl1129.35058MR2327134
- [21] Leray J., Sur le mouvement d'un liquids visqeux emplissant l'espace, Acta Math.63 (1934) 193-248. MR1555394JFM60.0726.05
- [22] Lin F.H., Zhang P., Zhang Z., On the global existence of smooth solution to the 2-D FENE dumbbell model, Comm. Math. Phys.277 (2008) 531-553. Zbl1143.82035MR2358294
- [23] Majda A.J., Bertozzi A.L., Vorticity and Incompressible Flow, Cambridge University Press, Cambridge, 2002. Zbl0983.76001MR1867882
- [24] Masmoudi N., Zhang P., Zhang Z., Global well-posedness for 2D polymeric fluid models and growth estimate, Physica D237 (2008) 1663-1675. Zbl1143.76356MR2454611
- [25] Prodi G., Un teorema di unicità per le equazioni di Navier–Stokes, Ann. Mat. Pura Appl.48 (1959) 173-182. Zbl0148.08202MR126088
- [26] Ribaud F., A remark on the uniqueness problem for the weak solutions of Navier–Stokes equations, Ann. Fac. Sci. Toulouse Math.11 (2002) 225-238. Zbl1046.35086MR1988463
- [27] Serrin J., The initial value problem for the Navier–Stokes equations, in: Langer R.E. (Ed.), Nonlinear Problems, University of Wisconsin Press, Madison, 1963, pp. 69-98. Zbl0115.08502MR150444
- [28] Stein E.M., Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, NJ, 1993. Zbl0821.42001MR1232192
- [29] Triebel H., Theory of Function Spaces, Monogr. Math., vol. 78, Birkhäuser-Verlag, Basel, 1983. Zbl0546.46027MR781540
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.