Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction

M. Colin; Th. Colin; M. Ohta

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 6, page 2211-2226
  • ISSN: 0294-1449

How to cite

top

Colin, M., Colin, Th., and Ohta, M.. "Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2211-2226. <http://eudml.org/doc/78931>.

@article{Colin2009,
author = {Colin, M., Colin, Th., Ohta, M.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {solitary wave; orbital stability; nonlinear Schrödinger equations; Raman amplification; plasma},
language = {eng},
number = {6},
pages = {2211-2226},
publisher = {Elsevier},
title = {Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction},
url = {http://eudml.org/doc/78931},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Colin, M.
AU - Colin, Th.
AU - Ohta, M.
TI - Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2211
EP - 2226
LA - eng
KW - solitary wave; orbital stability; nonlinear Schrödinger equations; Raman amplification; plasma
UR - http://eudml.org/doc/78931
ER -

References

top
  1. [1] Berestycki H., Cazenave T., Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires, C. R. Acad. Sci. Paris Sér. I Math.293 (1981) 489-492. Zbl0492.35010MR646873
  2. [2] Cazenave T., Semilinear Schrödinger Equations, Courant Lect. Notes Math. 10, Amer. Math. Soc., 2003. Zbl1055.35003MR2002047
  3. [3] Cazenave T., Lions P.L., Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys.85 (1982) 549-561. Zbl0513.35007MR677997
  4. [4] Chang S.-M., Gustafson S., Nakanishi K., Tsai T.-P., Spectra of linearized operators for NLS solitary waves, SIAM J. Math. Anal.39 (2007/2008) 1070-1111. Zbl1168.35041MR2368894
  5. [5] Colin M., Colin T., On a quasi-linear Zakharov system describing laser-plasma interactions, Differential Integral Equations17 (2004) 297-330. Zbl1174.35528MR2037980
  6. [6] Colin M., Colin T., A numerical model for the Raman amplification for laser-plasma interaction, J. Comput. Appl. Math.193 (2006) 535-562. Zbl1092.35101MR2229560
  7. [7] de Bouard A., Instability of stationary bubbles, SIAM J. Math. Anal.26 (1995) 566-582. Zbl0823.35017MR1325903
  8. [8] Di Menza L., Gallo C., The black solitons of one-dimensional NLS equations, Nonlinearity20 (2007) 461-496. Zbl1128.35095MR2290470
  9. [9] Esteban M., Strauss W., Nonlinear bound states outside an insulated sphere, Comm. Partial Differential Equations19 (1994) 177-197. Zbl0807.35134MR1257002
  10. [10] Fukuizumi R., Remarks on the stable standing waves for nonlinear Schrödinger equations with double power nonlinearity, Adv. Math. Sci. Appl.13 (2003) 549-564. Zbl1051.35085MR2029931
  11. [11] Gesztesy F., Jones C.K.R.T., Latushkin Y., Stanislavova M., A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations, Indiana Univ. Math. J.49 (2000) 221-243. Zbl0969.35123MR1777032
  12. [12] Grillakis M., Shatah J., Strauss W., Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal.74 (1987) 160-197. Zbl0656.35122MR901236
  13. [13] Grillakis M., Shatah J., Strauss W., Stability theory of solitary waves in the presence of symmetry, II, J. Funct. Anal.94 (1990) 308-348. Zbl0711.58013MR1081647
  14. [14] Iliev I.D., Kirchev P., Stability and instability of solitary waves for one-dimensional singular Schrödinger equations, Differential Integral Equations6 (1993) 685-703. Zbl0783.35071MR1202566
  15. [15] Kwong M.K., Uniqueness of positive solutions of Δ u - u + u p = 0 in R n , Arch. Ration. Mech. Anal.105 (1989) 234-266. Zbl0676.35032MR969899
  16. [16] Lieb E.H., Loss M., Analysis, Grad. Stud. Math., vol. 14, second ed., Amer. Math. Soc., 2001. Zbl0966.26002MR1817225
  17. [17] Mizumachi T., A remark on linearly unstable standing wave solutions to NLS, Nonlinear Anal.64 (2006) 657-676. Zbl1091.35093MR2197087
  18. [18] Shatah J., Strauss W., Instability of nonlinear bound states, Comm. Math. Phys.100 (1985) 173-190. Zbl0603.35007MR804458
  19. [19] Shatah J., Strauss W., Spectral condition for instability, in: Contemp. Math., vol. 255, 2000, pp. 189-198. Zbl0960.47033MR1752509
  20. [20] Sulem C., Sulem P.-L., The Nonlinear Schrödinger Equation: Self-focusing and Wave-collapse, Appl. Math. Sci., vol. 139, Springer-Verlag, 1999. Zbl0928.35157MR1696311
  21. [21] Weinstein M.I., Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math.39 (1986) 51-68. Zbl0594.35005MR820338
  22. [22] Weinstein M.I., Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal.16 (1985) 472-491. Zbl0583.35028MR783974

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.