Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 6, page 2211-2226
- ISSN: 0294-1449
Access Full Article
topHow to cite
topColin, M., Colin, Th., and Ohta, M.. "Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2211-2226. <http://eudml.org/doc/78931>.
@article{Colin2009,
author = {Colin, M., Colin, Th., Ohta, M.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {solitary wave; orbital stability; nonlinear Schrödinger equations; Raman amplification; plasma},
language = {eng},
number = {6},
pages = {2211-2226},
publisher = {Elsevier},
title = {Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction},
url = {http://eudml.org/doc/78931},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Colin, M.
AU - Colin, Th.
AU - Ohta, M.
TI - Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2211
EP - 2226
LA - eng
KW - solitary wave; orbital stability; nonlinear Schrödinger equations; Raman amplification; plasma
UR - http://eudml.org/doc/78931
ER -
References
top- [1] Berestycki H., Cazenave T., Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires, C. R. Acad. Sci. Paris Sér. I Math.293 (1981) 489-492. Zbl0492.35010MR646873
- [2] Cazenave T., Semilinear Schrödinger Equations, Courant Lect. Notes Math. 10, Amer. Math. Soc., 2003. Zbl1055.35003MR2002047
- [3] Cazenave T., Lions P.L., Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys.85 (1982) 549-561. Zbl0513.35007MR677997
- [4] Chang S.-M., Gustafson S., Nakanishi K., Tsai T.-P., Spectra of linearized operators for NLS solitary waves, SIAM J. Math. Anal.39 (2007/2008) 1070-1111. Zbl1168.35041MR2368894
- [5] Colin M., Colin T., On a quasi-linear Zakharov system describing laser-plasma interactions, Differential Integral Equations17 (2004) 297-330. Zbl1174.35528MR2037980
- [6] Colin M., Colin T., A numerical model for the Raman amplification for laser-plasma interaction, J. Comput. Appl. Math.193 (2006) 535-562. Zbl1092.35101MR2229560
- [7] de Bouard A., Instability of stationary bubbles, SIAM J. Math. Anal.26 (1995) 566-582. Zbl0823.35017MR1325903
- [8] Di Menza L., Gallo C., The black solitons of one-dimensional NLS equations, Nonlinearity20 (2007) 461-496. Zbl1128.35095MR2290470
- [9] Esteban M., Strauss W., Nonlinear bound states outside an insulated sphere, Comm. Partial Differential Equations19 (1994) 177-197. Zbl0807.35134MR1257002
- [10] Fukuizumi R., Remarks on the stable standing waves for nonlinear Schrödinger equations with double power nonlinearity, Adv. Math. Sci. Appl.13 (2003) 549-564. Zbl1051.35085MR2029931
- [11] Gesztesy F., Jones C.K.R.T., Latushkin Y., Stanislavova M., A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations, Indiana Univ. Math. J.49 (2000) 221-243. Zbl0969.35123MR1777032
- [12] Grillakis M., Shatah J., Strauss W., Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal.74 (1987) 160-197. Zbl0656.35122MR901236
- [13] Grillakis M., Shatah J., Strauss W., Stability theory of solitary waves in the presence of symmetry, II, J. Funct. Anal.94 (1990) 308-348. Zbl0711.58013MR1081647
- [14] Iliev I.D., Kirchev P., Stability and instability of solitary waves for one-dimensional singular Schrödinger equations, Differential Integral Equations6 (1993) 685-703. Zbl0783.35071MR1202566
- [15] Kwong M.K., Uniqueness of positive solutions of in , Arch. Ration. Mech. Anal.105 (1989) 234-266. Zbl0676.35032MR969899
- [16] Lieb E.H., Loss M., Analysis, Grad. Stud. Math., vol. 14, second ed., Amer. Math. Soc., 2001. Zbl0966.26002MR1817225
- [17] Mizumachi T., A remark on linearly unstable standing wave solutions to NLS, Nonlinear Anal.64 (2006) 657-676. Zbl1091.35093MR2197087
- [18] Shatah J., Strauss W., Instability of nonlinear bound states, Comm. Math. Phys.100 (1985) 173-190. Zbl0603.35007MR804458
- [19] Shatah J., Strauss W., Spectral condition for instability, in: Contemp. Math., vol. 255, 2000, pp. 189-198. Zbl0960.47033MR1752509
- [20] Sulem C., Sulem P.-L., The Nonlinear Schrödinger Equation: Self-focusing and Wave-collapse, Appl. Math. Sci., vol. 139, Springer-Verlag, 1999. Zbl0928.35157MR1696311
- [21] Weinstein M.I., Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math.39 (1986) 51-68. Zbl0594.35005MR820338
- [22] Weinstein M.I., Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal.16 (1985) 472-491. Zbl0583.35028MR783974
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.