Les voisinages ouverts réguliers

L. Siebenmann; L. Guillou; H. Hähl

Annales scientifiques de l'École Normale Supérieure (1973)

  • Volume: 6, Issue: 2, page 253-293
  • ISSN: 0012-9593

How to cite

top

Siebenmann, L., Guillou, L., and Hähl, H.. "Les voisinages ouverts réguliers." Annales scientifiques de l'École Normale Supérieure 6.2 (1973): 253-293. <http://eudml.org/doc/81917>.

@article{Siebenmann1973,
author = {Siebenmann, L., Guillou, L., Hähl, H.},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {fre},
number = {2},
pages = {253-293},
publisher = {Elsevier},
title = {Les voisinages ouverts réguliers},
url = {http://eudml.org/doc/81917},
volume = {6},
year = {1973},
}

TY - JOUR
AU - Siebenmann, L.
AU - Guillou, L.
AU - Hähl, H.
TI - Les voisinages ouverts réguliers
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1973
PB - Elsevier
VL - 6
IS - 2
SP - 253
EP - 293
LA - fre
UR - http://eudml.org/doc/81917
ER -

References

top
  1. [1] N. BOURBAKI, Éléments de mathématiques, Topologie générale, Livre I (4e éd.), Hermann, Paris, 1965. 
  2. [2] M. BROWN, A proof of the generalized Schoenflies theorem (Bull. Amer. Math. Soc., vol. 66, 1960, p. 74-76). Cf. aussi A. DOUADY, Plongement des sphères [Séminaire Bourbaki, 13e année (1960-1961), fasc. 1 (2e éd.), n° 205]. Zbl0132.20002
  3. [3] M. BROWN, The monotone union of open n-cells is an open n-cell (Proc. Amer. Math. Soc., vol. 12, 1961, p. 812-814). Zbl0103.39305MR23 #A4129
  4. [4] L. GUILLOU et H. HÄHL, Les voisinages ouverts réguliers: Critères homotopiques d'identification (à paraître). Zbl0344.57002
  5. [5] P. HOLM, The microbundle representation theorem (Acta Mathematica, vol. 117, 1967, p. 191-213). Zbl0148.17502MR34 #8427
  6. [6] R. C. KIRBY et L. C. SIEBENMANN, Some basic theorems for topological manifolds (preprint). Zbl0216.45203
  7. [7] J. M. KISTER, Microbundles are fiber bundles (Ann. of Math., vol. 80, 1964, p. 190-199). Zbl0131.20602MR31 #5216
  8. [8] S. KOBAYASHI et K. NOMIZU, Foundations of Differential Geometry, I, Interscience, New-York, 1963. Zbl0119.37502MR27 #2945
  9. [9] N. H. KUIPER et R. K. LASHOF, Microbundles and bundles, I (Invent. Math., vol 1, 1966, p. 1-17). Zbl0142.21901MR35 #7339
  10. [10] B. MAZUR, The method of infinite repetition in pure topology I (Ann. of Math., vol. 80, 1964, p. 201-226). Zbl0133.16506MR29 #6477
  11. [11] L. C. SIEBENMANN, The obstruction to finding a boundary for an open manifold of dimension ≥ 5 (Thesis, Princeton, 1965). 
  12. [12] L. C. SIEBENMANN, On the homotopy type of compact topological manifolds (Bull. Amer. Math. Soc., vol. 74, 1968, p. 738-742). Zbl0165.56703MR37 #3567
  13. [13] L. C. SIEBENMANN, Deformation of homeomorphisms on stratified sets (Comment. Math. Helv., vol. 47, 1972, p. 123-163). Zbl0252.57012MR47 #7752
  14. [14] L. C. SIEBENMANN, Regular open neighborhoods (General Topology and its applications, vol. 6, 1973, p. 51-61). Zbl0276.57003MR51 #6831
  15. [15] L. C. SIEBENMANN, Some locally triangulable compact metric spaces that are not simplicial complexes. 
  16. [16] L. C. SIEBENMANN, L. GUILLOU et H. HÄHL, Les voisinages ouverts réguliers: Critères homotopiques d'existence (à paraître). Zbl0318.57011
  17. [17] J. R. STALLINGS, Lectures on polyhedral topology, Tata Institute of Fundamental Research, Bombay, 1968. Zbl0182.26203
  18. [18] E. C. ZEEMAN, Seminar on combinatorial topology, mimeographed, Bures-sur-Yvette and University of Warwick, 1963. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.