A general comparison theorem with applications to volume estimates for submanifolds
Ernst Heintze; Hermann Karcher
Annales scientifiques de l'École Normale Supérieure (1978)
- Volume: 11, Issue: 4, page 451-470
- ISSN: 0012-9593
Access Full Article
topHow to cite
topHeintze, Ernst, and Karcher, Hermann. "A general comparison theorem with applications to volume estimates for submanifolds." Annales scientifiques de l'École Normale Supérieure 11.4 (1978): 451-470. <http://eudml.org/doc/82023>.
@article{Heintze1978,
author = {Heintze, Ernst, Karcher, Hermann},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {comparison theorem; volume estimates; submanifolds; compact Riemannian manifold},
language = {eng},
number = {4},
pages = {451-470},
publisher = {Elsevier},
title = {A general comparison theorem with applications to volume estimates for submanifolds},
url = {http://eudml.org/doc/82023},
volume = {11},
year = {1978},
}
TY - JOUR
AU - Heintze, Ernst
AU - Karcher, Hermann
TI - A general comparison theorem with applications to volume estimates for submanifolds
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1978
PB - Elsevier
VL - 11
IS - 4
SP - 451
EP - 470
LA - eng
KW - comparison theorem; volume estimates; submanifolds; compact Riemannian manifold
UR - http://eudml.org/doc/82023
ER -
References
top- [1] M. BERGER, An Extension of Rauch's Metric Comparison Theorem and some Applications (Illinois J. Math., vol. 6, 1962, pp. 700-712). Zbl0113.37003MR26 #719
- [2] R. BISHOP, A Relation Between Volume, Mean Curvature and Diameter (Amer. Math. Soc. Not., vol. 10, 1963, pp. 364).
- [3] K. BORSUK, Sur la courbure totale des courbes fermées (Ann. Soc. Polon. Math., vol. 20, 1947, pp. 251-265). Zbl0037.23602MR10,60e
- [4] J. CHEEGER, Finiteness theorems for Riemannian manifolds (Amer. J. Math., vol. 92, 1970, pp. 61-74). Zbl0194.52902MR41 #7697
- [5] B.-Y. CHEN, On the Total Curvature of Immersed Manifolds, I : An Inequality of Fenchel-Borsuk-Willmore (Amer. J. Math., vol. 93, 1971, pp. 148-162). Zbl0209.52803MR43 #3971
- [6] W. FENCHEL, Über die Krümmung und Windung geschlossener Raumkurven (Math. Ann., vol. 101, 1929, pp. 238-252). Zbl55.0394.06JFM55.0394.06
- [7] K. GROVE and K. SHIOHAMA, A Generalized Sphere Theorem (Ann. of Math., vol. 106, 1977, pp. 201-211). Zbl0341.53029MR58 #18268
- [8] C. HEIM, Une borne pour la longueur des géodésiques périodiques d'une variété riemannienne compacte (Thèse, Paris, 1971).
- [9] W. KLINGENBERG, Contribution to Riemannian Geometry in the Large (Ann. of Math., vol. 69, 1959, pp. 654-666). Zbl0133.15003MR21 #4445
- [10] T. NAGAYOSHI and Y. TSUKAMOTO, On Positively Curved Riemannian Manifolds with Bounded Volume (Tôhoku Math. J., 2nd series, vol. 25, 1973, pp. 213-218). Zbl0262.53031MR49 #11428
- [11] H. E. RAUCH, A Contribution to Differential Geometry in the Large (Ann. of Math., vol. 54, 1951, pp. 38-55). Zbl0043.37202MR13,159b
- [12] F. W. WARNER, The Conjugate Locus of a Riemannian Manifold (Amer. J. Math., vol. 87, 1965, pp. 575-604). Zbl0129.36002MR34 #8344
- [13] F. W. WARNER, Extensions of the Rauch Comparison Theorem to Submanifolds (Trans. Amer. Math. Soc., vol. 122, 1966, pp. 341-356). Zbl0139.15601MR34 #759
- [14] J. H. C. WHITEHEAD, On the Covering of a Complete Space by the Geodesics through a Point (Ann. of Math., vol. 36, 1935, pp. 679-704). Zbl0012.27802
- [15] T. J. WILLMORE, Note on Embedded Surfaces (An. Sti. Univ. “Al. I. Cuza”, Iasi, Sect. Ia Mat., 11B, 1965, pp. 493-496). Zbl0171.20001MR34 #1940
- [16] W. ZILLER, Closed Geodesics on Homogeneous Spaces [Math. Z. (to appear)].
Citations in EuDML Documents
top- Gilles Courtois, Spectre d'une variété privée d'un ɛ-tube (Conditions de Dirichlet)
- Daniel Meyer, Minoration de la première valeur propre non nulle du problème de Neumann sur les variétés riemanniennes à bord
- Sylvestre Gallot, Bornes universelles pour des invariants géométriques
- Alessandro Savo, A mean-value lemma and applications
- Vicente Miquel, Vicente Palmer, Mean curvature comparison for tubular hypersurfaces in Kähler manifolds and some applications
- Jean-Pierre Demailly, Thomas Peternell, Michael Schneider, Kähler manifolds with numerically effective Ricci class
- Sylvestre Gallot, Minorations sur le des variétés riemanniennes
- Alessandro Savo, A method of symmetrization ; Applications to heat and spectral estimates
- Gilles Courtois, Peut-on entendre les trous d'un tambour ?
- Paweł G. Walczak, A finiteness theorem for Riemannian submersions
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.