A mean-value lemma and applications

Alessandro Savo

Bulletin de la Société Mathématique de France (2001)

  • Volume: 129, Issue: 4, page 505-542
  • ISSN: 0037-9484

Abstract

top
We control the gap between the mean value of a function on a submanifold (or a point), and its mean value on any tube around the submanifold (in fact, we give the exact value of the second derivative of the gap). We apply this formula to obtain comparison theorems between eigenvalues of the Laplace-Beltrami operator, and then to compute the first three terms of the asymptotic time-expansion of a heat diffusion process on convex polyhedrons in euclidean spaces of arbitrary dimension. We also write explicit bounds for the remainder term of the above expansion, which hold for all values of time. The results of this paper have been announced, without proof, in [16].

How to cite

top

Savo, Alessandro. "A mean-value lemma and applications." Bulletin de la Société Mathématique de France 129.4 (2001): 505-542. <http://eudml.org/doc/272304>.

@article{Savo2001,
abstract = {We control the gap between the mean value of a function on a submanifold (or a point), and its mean value on any tube around the submanifold (in fact, we give the exact value of the second derivative of the gap). We apply this formula to obtain comparison theorems between eigenvalues of the Laplace-Beltrami operator, and then to compute the first three terms of the asymptotic time-expansion of a heat diffusion process on convex polyhedrons in euclidean spaces of arbitrary dimension. We also write explicit bounds for the remainder term of the above expansion, which hold for all values of time. The results of this paper have been announced, without proof, in [16].},
author = {Savo, Alessandro},
journal = {Bulletin de la Société Mathématique de France},
keywords = {distance function; eigenvalues of the Laplace operator; heat equation; asymptotic expansions},
language = {eng},
number = {4},
pages = {505-542},
publisher = {Société mathématique de France},
title = {A mean-value lemma and applications},
url = {http://eudml.org/doc/272304},
volume = {129},
year = {2001},
}

TY - JOUR
AU - Savo, Alessandro
TI - A mean-value lemma and applications
JO - Bulletin de la Société Mathématique de France
PY - 2001
PB - Société mathématique de France
VL - 129
IS - 4
SP - 505
EP - 542
AB - We control the gap between the mean value of a function on a submanifold (or a point), and its mean value on any tube around the submanifold (in fact, we give the exact value of the second derivative of the gap). We apply this formula to obtain comparison theorems between eigenvalues of the Laplace-Beltrami operator, and then to compute the first three terms of the asymptotic time-expansion of a heat diffusion process on convex polyhedrons in euclidean spaces of arbitrary dimension. We also write explicit bounds for the remainder term of the above expansion, which hold for all values of time. The results of this paper have been announced, without proof, in [16].
LA - eng
KW - distance function; eigenvalues of the Laplace operator; heat equation; asymptotic expansions
UR - http://eudml.org/doc/272304
ER -

References

top
  1. [1] M. van den Berg & P. Gilkey – « Heat content asymptotics for a Riemannian manifold with boundary », J. Funct. Anal.120 (1994), p. 48–71. Zbl0809.53047MR1262245
  2. [2] M. van den Berg & P. Le Gall – « Mean curvature and the heat equation », Math. Z.215 (1994), p. 437–464. Zbl0791.58089MR1262526
  3. [3] M. van den Berg & S. Srisatkunarajah – « Heat flow and brownian motion for a region in 2 with a polygonal boundary », Prob. Theory Rel. Fields86 (1990), p. 41–52. Zbl0682.60067MR1061947
  4. [4] R. Bishop & R. Crittenden – Geometry of manifolds, Academic Press, New York, 1964. Zbl0132.16003MR169148
  5. [5] Y. D. Burago & V. A. Zalgaller – Geometric inequalities, A Series of Comprehensive Studies in Mathematics, vol. 285, Springer Verlag, 1988. Zbl0633.53002MR936419
  6. [6] S. Cheng – « Eigenvalue comparison theorems and its geometric applications », Math. Z.142 (1975), p. 289–297. Zbl0329.53035MR378001
  7. [7] E. A. Coddington – An Introduction to Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, N. J., 1961. Zbl0123.27301MR126573
  8. [8] G. Courtois – « Comportement du spectre d’une variété riemannianne compacte sous perturbation topologique par excision d’un domaine », Thèse, Institut Fourier, Grenoble, 1987. 
  9. [9] H. Federer – Geometric measure theory, Springer Verlag, 1969. Zbl0874.49001MR257325
  10. [10] S. Gallot – « Inégalités isopérimetriques et analitiques sur les variétés riemanniennes », Astérisque 163-164 (1988), p. 31–91. Zbl0674.53001
  11. [11] I. Gradshteyn & I. Ryzhik – Table of integrals, series and products, Academic Press, 1980. Zbl0521.33001MR1398882
  12. [12] E. Heintze & H. Karcher – « A general comparison theorem with applications to volume estimates for submanifolds », Ann. Sci. École Norm. Sup.11 (1978), p. 451–470. Zbl0416.53027MR533065
  13. [13] A. Kasue – « On a lower bound for the first eigenvalue of the Laplace operator on a Riemannian manifold », Ann. Sci. École Norm. Sup. 17 (1984), no. 1, p. 31–44. Zbl0553.53026MR744066
  14. [14] S. Kobayashi – « On conjugate and cut-loci », Stud. Glob. Geom. and Analysis, Math. Ass. America (1967), p. 96–122. Zbl0683.53043MR212737
  15. [15] P. Li & S.-T. Yau – « Estimates of eigenvalues of a compact Riemannian manifold », Proc. Symp. Pure Math.36 (1980), p. 205–239. Zbl0441.58014MR573435
  16. [16] A. Savo – « Une méthode de symétrization et quelques applications », C. R. Acad. Sci. Paris série I322 (1996), p. 861–864. Zbl0853.46037MR1390606
  17. [17] —, « Uniform estimates and the whole asymptotic series of the heat content on manifolds », Geometriae Dedicata73 (1998), p. 181–214. Zbl0949.58028MR1652049
  18. [18] B. Simon – Functional integration and quantum physics, Academic Press, New York, 1980. Zbl0434.28013MR544188
  19. [19] F. Treves – Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1962. Zbl0171.10402MR225131

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.