A mean-value lemma and applications
Bulletin de la Société Mathématique de France (2001)
- Volume: 129, Issue: 4, page 505-542
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topSavo, Alessandro. "A mean-value lemma and applications." Bulletin de la Société Mathématique de France 129.4 (2001): 505-542. <http://eudml.org/doc/272304>.
@article{Savo2001,
abstract = {We control the gap between the mean value of a function on a submanifold (or a point), and its mean value on any tube around the submanifold (in fact, we give the exact value of the second derivative of the gap). We apply this formula to obtain comparison theorems between eigenvalues of the Laplace-Beltrami operator, and then to compute the first three terms of the asymptotic time-expansion of a heat diffusion process on convex polyhedrons in euclidean spaces of arbitrary dimension. We also write explicit bounds for the remainder term of the above expansion, which hold for all values of time. The results of this paper have been announced, without proof, in [16].},
author = {Savo, Alessandro},
journal = {Bulletin de la Société Mathématique de France},
keywords = {distance function; eigenvalues of the Laplace operator; heat equation; asymptotic expansions},
language = {eng},
number = {4},
pages = {505-542},
publisher = {Société mathématique de France},
title = {A mean-value lemma and applications},
url = {http://eudml.org/doc/272304},
volume = {129},
year = {2001},
}
TY - JOUR
AU - Savo, Alessandro
TI - A mean-value lemma and applications
JO - Bulletin de la Société Mathématique de France
PY - 2001
PB - Société mathématique de France
VL - 129
IS - 4
SP - 505
EP - 542
AB - We control the gap between the mean value of a function on a submanifold (or a point), and its mean value on any tube around the submanifold (in fact, we give the exact value of the second derivative of the gap). We apply this formula to obtain comparison theorems between eigenvalues of the Laplace-Beltrami operator, and then to compute the first three terms of the asymptotic time-expansion of a heat diffusion process on convex polyhedrons in euclidean spaces of arbitrary dimension. We also write explicit bounds for the remainder term of the above expansion, which hold for all values of time. The results of this paper have been announced, without proof, in [16].
LA - eng
KW - distance function; eigenvalues of the Laplace operator; heat equation; asymptotic expansions
UR - http://eudml.org/doc/272304
ER -
References
top- [1] M. van den Berg & P. Gilkey – « Heat content asymptotics for a Riemannian manifold with boundary », J. Funct. Anal.120 (1994), p. 48–71. Zbl0809.53047MR1262245
- [2] M. van den Berg & P. Le Gall – « Mean curvature and the heat equation », Math. Z.215 (1994), p. 437–464. Zbl0791.58089MR1262526
- [3] M. van den Berg & S. Srisatkunarajah – « Heat flow and brownian motion for a region in with a polygonal boundary », Prob. Theory Rel. Fields86 (1990), p. 41–52. Zbl0682.60067MR1061947
- [4] R. Bishop & R. Crittenden – Geometry of manifolds, Academic Press, New York, 1964. Zbl0132.16003MR169148
- [5] Y. D. Burago & V. A. Zalgaller – Geometric inequalities, A Series of Comprehensive Studies in Mathematics, vol. 285, Springer Verlag, 1988. Zbl0633.53002MR936419
- [6] S. Cheng – « Eigenvalue comparison theorems and its geometric applications », Math. Z.142 (1975), p. 289–297. Zbl0329.53035MR378001
- [7] E. A. Coddington – An Introduction to Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, N. J., 1961. Zbl0123.27301MR126573
- [8] G. Courtois – « Comportement du spectre d’une variété riemannianne compacte sous perturbation topologique par excision d’un domaine », Thèse, Institut Fourier, Grenoble, 1987.
- [9] H. Federer – Geometric measure theory, Springer Verlag, 1969. Zbl0874.49001MR257325
- [10] S. Gallot – « Inégalités isopérimetriques et analitiques sur les variétés riemanniennes », Astérisque 163-164 (1988), p. 31–91. Zbl0674.53001
- [11] I. Gradshteyn & I. Ryzhik – Table of integrals, series and products, Academic Press, 1980. Zbl0521.33001MR1398882
- [12] E. Heintze & H. Karcher – « A general comparison theorem with applications to volume estimates for submanifolds », Ann. Sci. École Norm. Sup.11 (1978), p. 451–470. Zbl0416.53027MR533065
- [13] A. Kasue – « On a lower bound for the first eigenvalue of the Laplace operator on a Riemannian manifold », Ann. Sci. École Norm. Sup. 17 (1984), no. 1, p. 31–44. Zbl0553.53026MR744066
- [14] S. Kobayashi – « On conjugate and cut-loci », Stud. Glob. Geom. and Analysis, Math. Ass. America (1967), p. 96–122. Zbl0683.53043MR212737
- [15] P. Li & S.-T. Yau – « Estimates of eigenvalues of a compact Riemannian manifold », Proc. Symp. Pure Math.36 (1980), p. 205–239. Zbl0441.58014MR573435
- [16] A. Savo – « Une méthode de symétrization et quelques applications », C. R. Acad. Sci. Paris série I322 (1996), p. 861–864. Zbl0853.46037MR1390606
- [17] —, « Uniform estimates and the whole asymptotic series of the heat content on manifolds », Geometriae Dedicata73 (1998), p. 181–214. Zbl0949.58028MR1652049
- [18] B. Simon – Functional integration and quantum physics, Academic Press, New York, 1980. Zbl0434.28013MR544188
- [19] F. Treves – Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1962. Zbl0171.10402MR225131
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.