Local homology of groups of volume preserving diffeomorphisms. I

Dusa McDuff

Annales scientifiques de l'École Normale Supérieure (1982)

  • Volume: 15, Issue: 4, page 609-648
  • ISSN: 0012-9593

How to cite

top

McDuff, Dusa. "Local homology of groups of volume preserving diffeomorphisms. I." Annales scientifiques de l'École Normale Supérieure 15.4 (1982): 609-648. <http://eudml.org/doc/82107>.

@article{McDuff1982,
author = {McDuff, Dusa},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {topological group; classifying space; local homology; volume preserving diffeomorphisms; compactly supported -preserving diffeomorphisms},
language = {eng},
number = {4},
pages = {609-648},
publisher = {Elsevier},
title = {Local homology of groups of volume preserving diffeomorphisms. I},
url = {http://eudml.org/doc/82107},
volume = {15},
year = {1982},
}

TY - JOUR
AU - McDuff, Dusa
TI - Local homology of groups of volume preserving diffeomorphisms. I
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1982
PB - Elsevier
VL - 15
IS - 4
SP - 609
EP - 648
LA - eng
KW - topological group; classifying space; local homology; volume preserving diffeomorphisms; compactly supported -preserving diffeomorphisms
UR - http://eudml.org/doc/82107
ER -

References

top
  1. [1] A. BANYAGA, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique (Comm. Math. Helv., Vol. 53, 1978, pp. 174-227). Zbl0393.58007MR80c:58005
  2. [2] R. E. GREENE and K. SHIOHAMA, Diffeomorphisms and Volume Preserving Embeddings of Non-Compact Manifolds (Trans. A.M.S., Vol. 255, 1979, pp. 403-414). Zbl0418.58002MR80k:58031
  3. [3] A. HAEFLIGER, Homotopy and Integrability, in : Manifolds, Amsterdam 1970 (Springer Lect. Notes, No. 197, 1971, pp. 133-163). Zbl0215.52403MR44 #2251
  4. [4] J. C. HAUSMANN and D. HUSEMOLLER, Acyclic Maps (Enseign. Math., 1979). Zbl0412.55008MR80k:55044
  5. [5] A. KRYGIN, Continuation of Diffeomorphisms Preserving Volume (Funct. Anal. and Appl., Vol. 5, 1971, pp. 147-150). Zbl0236.57016MR51 #4309
  6. [6] J. MATHER, The Vanishing of the Homology of Certain Groups of Homeomorphisms (Topology, Vol. 10, 1971, pp. 297-298). Zbl0207.21903MR44 #5973
  7. [7] J. MATHER, Integrability in Codimension 1 (Comm. Math. Helv., Vol. 48, 1973, pp. 195-233). Zbl0284.57016MR50 #8556
  8. [8] D. MCDUFF, Foliations and Monoids of Embeddings, in : Geometric Topology, Cantrell, Academic Press, 1979, pp. 429-444. Zbl0473.57016MR82m:57014
  9. [9] D. MCDUFF, The Homology of Some Groups of Diffeomorphisms (Comm. Math. Helv., Vol. 55, 1980, pp. 97-129). Zbl0448.57015MR81j:57018
  10. [10] D. MCDUFF, On groups of Volume Preserving Diffeomorphisms and Foliations with Transverse Volume Form (Proc. London Math. Soc., (3), Vol. 43, 1981, pp. 295-320). Zbl0411.57028MR83g:58007
  11. [11] D. MCDUFF, On Tangle Complexes and Volume Preserving Diffeomorphisms of Open 3-Manifolds (Proc. London Math. Soc., (3), Vol. 43, 1981, pp. 321-333). Zbl0411.57029MR83g:58008
  12. [12] G. ROUSSEAU, Difféomorphisms d'une variété symplectique non-compacte (Comm. Math. Helv., Vol. 53, 1978, pp. 622-633). Zbl0393.53017MR80a:58010
  13. [13] G. B. SEGAL, Classifying Spaces Related to Foliations (Topology, Vol. 17, 1978, pp. 367-382). Zbl0398.57018MR80h:57036
  14. [14] S. SMALE, Diffeomorphisms of the 2-sphere (Proc. A.M.S., Vol. 10, 1959, pp. 621-626). Zbl0118.39103MR22 #3004
  15. [15] W. THURSTON, Foliations and Groups of Diffeomorphisms (Bull. A.M.S., 80, 1974, pp. 304-307). Zbl0295.57014MR49 #4027
  16. [16] W. THURSTON, On the Structure of the Group of Volume Preserving Diffeomorphisms, Preprint c. 1973. 
  17. [17] J. MATHER, Foliations and Local Homology of Groups of diffeomorphisms (Proc. Int. Congr. Math., Vancouver, 1974, Vol. 2, pp. 35-37). Zbl0333.57015MR55 #4205

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.