Bloch-Ogus properties for topological cycle theory

Eric M. Friedlander

Annales scientifiques de l'École Normale Supérieure (2000)

  • Volume: 33, Issue: 1, page 57-79
  • ISSN: 0012-9593

How to cite

top

Friedlander, Eric M.. "Bloch-Ogus properties for topological cycle theory." Annales scientifiques de l'École Normale Supérieure 33.1 (2000): 57-79. <http://eudml.org/doc/82510>.

@article{Friedlander2000,
author = {Friedlander, Eric M.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {morphic cohomology; Lawson homology; Bloch-Ogus axioms; topological cycle homology; topological cycle cohomology; qfh-topology; Chern classes; Riemann-Roch formula},
language = {eng},
number = {1},
pages = {57-79},
publisher = {Elsevier},
title = {Bloch-Ogus properties for topological cycle theory},
url = {http://eudml.org/doc/82510},
volume = {33},
year = {2000},
}

TY - JOUR
AU - Friedlander, Eric M.
TI - Bloch-Ogus properties for topological cycle theory
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 1
SP - 57
EP - 79
LA - eng
KW - morphic cohomology; Lawson homology; Bloch-Ogus axioms; topological cycle homology; topological cycle cohomology; qfh-topology; Chern classes; Riemann-Roch formula
UR - http://eudml.org/doc/82510
ER -

References

top
  1. [1] F.J. ALMGREN, JR., Homotopy groups of the integral cyclic groups, Topology 1 (1962) 257-299. Zbl0118.18503MR26 #4355
  2. [2] D. BARLET, Espace Analytique Réduit des Cycles Analytiques Complexes Compacts d'un Espace Analytique Complexe de Dimension Finite, Fonctions de Plusieurs Variables, II, Lecture Notes in Math., Vol. 482, Springer, Berlin, 1975, pp. 1-158. Zbl0331.32008MR53 #3347
  3. [3] S. BLOCH and A. OGUS, Gersten's conjecture and the homology of schemes, Ann. Éc. Norm. Sup. 7 (1974) 181-202. Zbl0307.14008MR54 #318
  4. [4] K. BROWN and S. GERSTEN, Algebraic K-Theory as Generalized Sheaf Cohomology, Algebraic K-Theory, I, Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 266-292. Zbl0291.18017MR50 #442
  5. [5] E. FRIEDLANDER, Algebraic cocycles, Chow varieties, and Lawson homology, Compositio Math. 77 (1991) 55-93. Zbl0754.14011MR92a:14005
  6. [6] E. FRIEDLANDER, Algebraic cocycles on normal, quasi-projective varieties, Compositio Math. 110 (1998) 127-162. Zbl0915.14004MR2000a:14024
  7. [7] E. FRIEDLANDER and O. GABBER, Cycles spaces and intersection theory, Topological Methods in Modern Mathematics (1993) 325-370. Zbl0830.14008MR94j:14010
  8. [8] E. FRIEDLANDER and H.B. LAWSON, A theory of algebraic cocycles, Annals of Math. 136 (1992) 361-428. Zbl0788.14014MR93g:14013
  9. [9] E. FRIEDLANDER and H.B. LAWSON, Duality relating spaces of algebraic cocycles and cycles, Topology 36 (1997) 533-565. Zbl0889.14004MR97k:14007
  10. [10] E. FRIEDLANDER and H.B. LAWSON, Moving algebraic cycles of bounded degree, Inventiones Math. 132 (1998) 91-119. Zbl0936.14005MR99k:14011
  11. [11] E. FRIEDLANDER and H.B. LAWSON, Graph mappings and Poincaré duality. 
  12. [12] E. FRIEDLANDER and B. MAZUR, Filtration on the Homology of Algebraic Varieties, Memoirs of AMS, Vol. 529, 1994. Zbl0841.14019MR95a:14023
  13. [13] E. FRIEDLANDER and V. VOEVODSKY, Bivariant cycle cohomology, in : V. Voevodsky, A. Suslin and E. Friedlander, eds., Cycles, Transfers, and Motivic Homology Theories, Annals of Math. Studies, 1999. Zbl1019.14011
  14. [14] E. FRIEDLANDER and M. WALKER, Function spaces and continuous algebraic pairings for varieties, Compositio Math. (to appear). Zbl1049.14003
  15. [15] H. GILLET, Riemann-Roch theorems for higher algebraic K-theory, Adv. in Math. 40 (1981) 203-289. Zbl0478.14010MR83m:14013
  16. [16] H.B. LAWSON, Algebraic cycles and homotopy theory, Annals of Math. 129 (1989) 253-291. Zbl0688.14006MR90h:14008
  17. [17] P. LIMA-FILHO, Completions and fibrations for topological monoids, Trans. Amer. Math. Soc. 340 (1993) 127-147. Zbl0788.55013MR94a:55009
  18. [18] A. SUSLIN and V. VOEVODSKY, Chow sheaves, in : V. Voevodsky, A. Suslin and E. Friedlander, eds., Cycles, Transfers, and Motivic Homology Theories, Annals of Math. Studies, 1999. 

NotesEmbed ?

top

You must be logged in to post comments.