Bloch-Ogus properties for topological cycle theory

Eric M. Friedlander

Annales scientifiques de l'École Normale Supérieure (2000)

  • Volume: 33, Issue: 1, page 57-79
  • ISSN: 0012-9593

How to cite

top

Friedlander, Eric M.. "Bloch-Ogus properties for topological cycle theory." Annales scientifiques de l'École Normale Supérieure 33.1 (2000): 57-79. <http://eudml.org/doc/82510>.

@article{Friedlander2000,
author = {Friedlander, Eric M.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {morphic cohomology; Lawson homology; Bloch-Ogus axioms; topological cycle homology; topological cycle cohomology; qfh-topology; Chern classes; Riemann-Roch formula},
language = {eng},
number = {1},
pages = {57-79},
publisher = {Elsevier},
title = {Bloch-Ogus properties for topological cycle theory},
url = {http://eudml.org/doc/82510},
volume = {33},
year = {2000},
}

TY - JOUR
AU - Friedlander, Eric M.
TI - Bloch-Ogus properties for topological cycle theory
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 1
SP - 57
EP - 79
LA - eng
KW - morphic cohomology; Lawson homology; Bloch-Ogus axioms; topological cycle homology; topological cycle cohomology; qfh-topology; Chern classes; Riemann-Roch formula
UR - http://eudml.org/doc/82510
ER -

References

top
  1. [1] F.J. ALMGREN, JR., Homotopy groups of the integral cyclic groups, Topology 1 (1962) 257-299. Zbl0118.18503MR26 #4355
  2. [2] D. BARLET, Espace Analytique Réduit des Cycles Analytiques Complexes Compacts d'un Espace Analytique Complexe de Dimension Finite, Fonctions de Plusieurs Variables, II, Lecture Notes in Math., Vol. 482, Springer, Berlin, 1975, pp. 1-158. Zbl0331.32008MR53 #3347
  3. [3] S. BLOCH and A. OGUS, Gersten's conjecture and the homology of schemes, Ann. Éc. Norm. Sup. 7 (1974) 181-202. Zbl0307.14008MR54 #318
  4. [4] K. BROWN and S. GERSTEN, Algebraic K-Theory as Generalized Sheaf Cohomology, Algebraic K-Theory, I, Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 266-292. Zbl0291.18017MR50 #442
  5. [5] E. FRIEDLANDER, Algebraic cocycles, Chow varieties, and Lawson homology, Compositio Math. 77 (1991) 55-93. Zbl0754.14011MR92a:14005
  6. [6] E. FRIEDLANDER, Algebraic cocycles on normal, quasi-projective varieties, Compositio Math. 110 (1998) 127-162. Zbl0915.14004MR2000a:14024
  7. [7] E. FRIEDLANDER and O. GABBER, Cycles spaces and intersection theory, Topological Methods in Modern Mathematics (1993) 325-370. Zbl0830.14008MR94j:14010
  8. [8] E. FRIEDLANDER and H.B. LAWSON, A theory of algebraic cocycles, Annals of Math. 136 (1992) 361-428. Zbl0788.14014MR93g:14013
  9. [9] E. FRIEDLANDER and H.B. LAWSON, Duality relating spaces of algebraic cocycles and cycles, Topology 36 (1997) 533-565. Zbl0889.14004MR97k:14007
  10. [10] E. FRIEDLANDER and H.B. LAWSON, Moving algebraic cycles of bounded degree, Inventiones Math. 132 (1998) 91-119. Zbl0936.14005MR99k:14011
  11. [11] E. FRIEDLANDER and H.B. LAWSON, Graph mappings and Poincaré duality. 
  12. [12] E. FRIEDLANDER and B. MAZUR, Filtration on the Homology of Algebraic Varieties, Memoirs of AMS, Vol. 529, 1994. Zbl0841.14019MR95a:14023
  13. [13] E. FRIEDLANDER and V. VOEVODSKY, Bivariant cycle cohomology, in : V. Voevodsky, A. Suslin and E. Friedlander, eds., Cycles, Transfers, and Motivic Homology Theories, Annals of Math. Studies, 1999. Zbl1019.14011
  14. [14] E. FRIEDLANDER and M. WALKER, Function spaces and continuous algebraic pairings for varieties, Compositio Math. (to appear). Zbl1049.14003
  15. [15] H. GILLET, Riemann-Roch theorems for higher algebraic K-theory, Adv. in Math. 40 (1981) 203-289. Zbl0478.14010MR83m:14013
  16. [16] H.B. LAWSON, Algebraic cycles and homotopy theory, Annals of Math. 129 (1989) 253-291. Zbl0688.14006MR90h:14008
  17. [17] P. LIMA-FILHO, Completions and fibrations for topological monoids, Trans. Amer. Math. Soc. 340 (1993) 127-147. Zbl0788.55013MR94a:55009
  18. [18] A. SUSLIN and V. VOEVODSKY, Chow sheaves, in : V. Voevodsky, A. Suslin and E. Friedlander, eds., Cycles, Transfers, and Motivic Homology Theories, Annals of Math. Studies, 1999. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.