On the capillarity problem with constant volume

Claus Gerhardt

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1975)

  • Volume: 2, Issue: 2, page 303-320
  • ISSN: 0391-173X

How to cite

top

Gerhardt, Claus. "On the capillarity problem with constant volume." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.2 (1975): 303-320. <http://eudml.org/doc/83691>.

@article{Gerhardt1975,
author = {Gerhardt, Claus},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {303-320},
publisher = {Scuola normale superiore},
title = {On the capillarity problem with constant volume},
url = {http://eudml.org/doc/83691},
volume = {2},
year = {1975},
}

TY - JOUR
AU - Gerhardt, Claus
TI - On the capillarity problem with constant volume
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1975
PB - Scuola normale superiore
VL - 2
IS - 2
SP - 303
EP - 320
LA - eng
UR - http://eudml.org/doc/83691
ER -

References

top
  1. [1] P. Concus - R. Finn, On a class of capillary surfaces, J. Analyse Math., 23 (1970), pp. 65-70. Zbl0257.76007MR273889
  2. [2] P. Concus - R. Finn, On capillary free surfaces in a gravitational field, Acta Math., 132 (1974), pp. 207-223. Zbl0382.76005MR670443
  3. [3] P. Concus - R. Finn, On capillary free surfaces in the absence of gravity, Acta Math., 132 (1974), pp. 177-198. Zbl0382.76003MR670441
  4. [4] M. Emmer, Esistenza, unicità e regolarità delle superfici di equilibrio nei capillari, Ann. Univ. Ferrara, n. 0, Ser., Sez. VII, 18 (1973), pp. 79-94. Zbl0275.49005MR336507
  5. [5] R. Finn, A note on the capillary problem, Acta Math., 132 (1974), pp. 199-205. Zbl0382.76004MR670442
  6. [6] R. Finn, Capillarity phenomena, to appear in Uspehi Mat. Nauk. Zbl0325.76046MR484001
  7. [7] C. Gerhardt, Existence and regularity of capillary surfaces, Boll. Un. Mat. Ital., Ser. IV, 10 (1974), pp. 317-335. Zbl0314.49019MR365316
  8. [8] C. Gerhardt, Existence, regularity, and boundary behaviour of generalized surfaces of prescribed mean curvature, Math. Z., 139 (1974), pp. 173-198. Zbl0316.49005MR437925
  9. [9] S. Hildebrandt - H.C. Wente, Variational problems with obstacles and a volume constraint, Math. Z., 135 (1973), pp. 55-68. Zbl0284.49017MR365314
  10. [10] H. Minkowski, Kapillarität, Encyclopädie der Mathematischen Wissenschaften, Vol. VI, pp. 559-613, Leipzig: Teubner1903-1921. 
  11. [11] J Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Paris, 1967. MR227584
  12. [12] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966. Zbl0149.09501MR209834
  13. [13] G. Stampacchia, Equations elliptiques du second ordre à coefficient discontinus, Sem. Math. Sup., Université de Montréal, 1966. Zbl0151.15501MR251373
  14. [14] K. Steffen, Flächen konstanter mittlerer Krümmung mit vorgegebenem Volumen oder Flächeninhalt, Arch. Rat. Mech. Analysis, 49 (1972), pp. 99-128. Zbl0259.53043MR341261
  15. [15] H.C. Wente, A general existence theorem for surfaces of constant mean curvature, Math. Z., 120 (1971), pp. 277-288. Zbl0214.11101MR282300
  16. [16] H.C. Wente, An existence theorem for surfaces in equilibrium satisfying a volume constraint, Arch. Rat. Mech. Analysis, 50 (1973), pp. 139-158. Zbl0268.49051MR336563

Citations in EuDML Documents

top
  1. G. Congedo, M. Emmer, E. H. A. Gonzalez, Rotating drops in a vessel
  2. Jin Liang, Regularity of solutions for arbitrary order variational inequalities with general convex sets
  3. Claus Gerhardt, Global regularity of the solutions to the capillarity problem
  4. Michele Emmer, On the behaviour of the surfaces of equilibrium in the capillary tubes when gravity goes to zero
  5. E. Barozzi, M. Emmer, E. H. A. González, Lagrange multipliers and variational methods for equilibrium problems of fluids

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.