New solutions of equations on n

Edward Norman Dancer

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2001)

  • Volume: 30, Issue: 3-4, page 535-563
  • ISSN: 0391-173X

How to cite

top

Dancer, Edward Norman. "New solutions of equations on $\mathbb {R}^n$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 30.3-4 (2001): 535-563. <http://eudml.org/doc/84452>.

@article{Dancer2001,
author = {Dancer, Edward Norman},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {nonlinearly perturbed elliptic equation; local and global bifurcation; population models; combustion theory},
language = {eng},
number = {3-4},
pages = {535-563},
publisher = {Scuola normale superiore},
title = {New solutions of equations on $\mathbb \{R\}^n$},
url = {http://eudml.org/doc/84452},
volume = {30},
year = {2001},
}

TY - JOUR
AU - Dancer, Edward Norman
TI - New solutions of equations on $\mathbb {R}^n$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2001
PB - Scuola normale superiore
VL - 30
IS - 3-4
SP - 535
EP - 563
LA - eng
KW - nonlinearly perturbed elliptic equation; local and global bifurcation; population models; combustion theory
UR - http://eudml.org/doc/84452
ER -

References

top
  1. [1] A. Ambrosetti - C. Coti-Zelati - I. Ekeland, Symmetry breaking in Hamiltonian systems, Differential Equations67 (1987), 165-184. Zbl0606.58043MR879691
  2. [2] A. Ambrosetti - Garcia Azorero - I. Peral, Perturbations of Δu + un+2)/(n-2) = 0, the scalar curvature problem on Rn and related topics, J. Funct. Anal.165 (1999), 117-149. Zbl0938.35056
  3. [3] B. Buffoni - E.N. Dancer - J. Toland, The regularity and local bifurcation of Stokes waves, Arch. Rational Mech. Anal.152 (2000), 207-240. Zbl0959.76010MR1764945
  4. [4] B. Buffoni - E.N. Dancer - J. Toland, The subharmonic bifurcation of Stokes waves, Arch. Rational Mech. Anal.152 (2000), 241-271. Zbl0962.76012MR1764946
  5. [5] H. Cartan, "Calcul differentiel, Hermann, Paris, 1967. Zbl0156.36102MR223194
  6. [6] M. Crandall - P. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal.8 (1971), 321-340. Zbl0219.46015MR288640
  7. [7] M. Crandall - P. Rabonowitz, Bifurcation perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal.52 (1973), 161-180. Zbl0275.47044MR341212
  8. [8] E.N. Dancer, On the uniqueness of the positive solution of a singularly perturbed problem, Rocky Mountain J. Math.25 (1995), 957-975. Zbl0846.35046MR1357103
  9. [9] E.N. Dancer, On positive solutions of some singularly perturbed problems where the nonlinearity changes sign, Top. Methods Nonlinear Anal.5 (1995), 141-175. Zbl0835.35013MR1350350
  10. [10] E.N. Dancer, "Weakly nonlinear equations on long or thin domains", Mem. Amer. Math. Soc.501Providence, RI, 1993. Zbl0788.35005MR1157561
  11. [11] E.N. Dancer, On the structure of solutions of nonlinear eigenvalue problems, Indiana Univ. Math. J.23 (1974), 1069-1076. Zbl0276.47051MR348567
  12. [12] E.N. Dancer, Global structure of the solution set of non-linear real analytic eigenvalue problems, Proc. London Math. Soc.26 (1973), 359-384. 
  13. [13] E.N. Dancer, Infinitely many turning points for some supercritical problems, to appear in Annali di Matematica. Zbl1030.35073MR1849387
  14. [14] E.N. Dancer, The G-invariant implicit function theorem in infinite dimensions, Proc. Royal Soc. Edinburgh92A (1982), 13-30. Zbl0512.58011MR667122
  15. [15] E.N. Dancer, The G-invariant implicit function theorem in infinite dimensions II, Proc. Royal Soc Edinburgh102A (1986), 211-220. Zbl0601.58013MR852355
  16. [16] E.N. Dancer, Some notes on the method of moving planes, Bull Austra. Math. Soc.46 (1992), 425-434. Zbl0777.35005MR1190345
  17. [17] B. Gidas, Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations, pp. 255-273 In: "Nonlinear partial differential equations in science and engineering", R. Sternberg (ed.), Marcel Dekker, New York, 1980. Zbl0444.35038MR577096
  18. [18] B. Gidas, W.M. Ni - L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations on Rn, pp. 369-402 In: "Mathematical Analysis and Applications", Part A, L. Nachbin (ed.), Academic Press, New York, 1981. Zbl0469.35052
  19. [19] D. Gilbarg - N. Trudinger, "Elliptic partial differential equations of second order", 2nd edition, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
  20. [20] W. Hayman - P. Kennedy, "Subharmonic functions", Academic Press, London, 1976. Zbl0419.31001
  21. [21] R. Hewitt - K. Stromberg, "Real and abstract analysis", Springer-Verlag, Berlin, 1965. Zbl0137.03202
  22. [22] C. Isnard, The topological degree on Banach manifolds, pp. 291-314 In: "Global analysis and its applications", Vol II, International atomic energy agency, Vienna, 1974. Zbl0309.55007MR436193
  23. [23] T. Kato, "Perturbation theory for linear operators", Springer-Verlag, Berlin, 1966. Zbl0148.12601MR203473
  24. [24] O. Kavian, "Introduction à la théorie des points critiques", Springer-Verlag, Berlin, 1993. Zbl0797.58005MR1276944
  25. [25] H. Kielhofer, A bifurcation theorem for potential operators, J. Funct. Anal.77 (1988), 1-8. Zbl0643.47057MR930387
  26. [26] M.A. Kransnosel'skii, "Topological methods in the theory of nonlinear integral equations", Perganon, New York, 1964. 
  27. [27] M.K. Kwong - Liqun Zhang, Uniqueness of the positive solution of Δu + f(u) = 0, in an annulus, Differential Integral Equations4 (1991), 583-599. Zbl0724.34023
  28. [28] O. Ladyzhenskaya - N. Uraltseva, "Linear and quasilinear elliptic equations", Academic Press, New York, 1968. Zbl0164.13002MR244627
  29. [29] P. Rabinowitz, A bifurcation theorem for potential operators, J. Funct. Anal.25 (1977), 412-424. Zbl0369.47038MR463990
  30. [30] M. Reed - B. Simon, "Methods of modem mathematical physics volume IV: analysis of operators ", Academic Press, New York, 1978. Zbl0401.47001MR493421
  31. [31] O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal.89 (1990), 1-52. Zbl0786.35059MR1040954
  32. [32] K. Rybakowski, "The homotopy index and partial differential equations", Springer-Verlag, Berlin, 1987. Zbl0628.58006MR910097
  33. [33] J. Saut - R. Temam, Generic properties of nonlinear boundary value problems, Comm. Partial Differential Equations4 (1979), 293-319. Zbl0462.35016MR522714
  34. [34] J. Toland, On positive solutions of -Δu = F(x, u), Math Z.182 (1983), 351-357. Zbl0491.35048
  35. [35] M.M. Vainberg, "Variational methods for the study of nonlinear operators", Holden Day, San Francisco, 1964. Zbl0122.35501MR176364
  36. [36] L. Ward, "Topology", Marcel Dekker, New York, 1972. Zbl0261.54001MR467643
  37. [37] H. Zou, Slow decay and the Harnack inequality for positive solutions of Δu + up = 0 in Rn, Differential Integral Equations8 (1995), 1355-1368. Zbl0849.35028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.