New solutions of equations on
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2001)
- Volume: 30, Issue: 3-4, page 535-563
- ISSN: 0391-173X
Access Full Article
topHow to cite
topDancer, Edward Norman. "New solutions of equations on $\mathbb {R}^n$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 30.3-4 (2001): 535-563. <http://eudml.org/doc/84452>.
@article{Dancer2001,
author = {Dancer, Edward Norman},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {nonlinearly perturbed elliptic equation; local and global bifurcation; population models; combustion theory},
language = {eng},
number = {3-4},
pages = {535-563},
publisher = {Scuola normale superiore},
title = {New solutions of equations on $\mathbb \{R\}^n$},
url = {http://eudml.org/doc/84452},
volume = {30},
year = {2001},
}
TY - JOUR
AU - Dancer, Edward Norman
TI - New solutions of equations on $\mathbb {R}^n$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2001
PB - Scuola normale superiore
VL - 30
IS - 3-4
SP - 535
EP - 563
LA - eng
KW - nonlinearly perturbed elliptic equation; local and global bifurcation; population models; combustion theory
UR - http://eudml.org/doc/84452
ER -
References
top- [1] A. Ambrosetti - C. Coti-Zelati - I. Ekeland, Symmetry breaking in Hamiltonian systems, Differential Equations67 (1987), 165-184. Zbl0606.58043MR879691
- [2] A. Ambrosetti - Garcia Azorero - I. Peral, Perturbations of Δu + un+2)/(n-2) = 0, the scalar curvature problem on Rn and related topics, J. Funct. Anal.165 (1999), 117-149. Zbl0938.35056
- [3] B. Buffoni - E.N. Dancer - J. Toland, The regularity and local bifurcation of Stokes waves, Arch. Rational Mech. Anal.152 (2000), 207-240. Zbl0959.76010MR1764945
- [4] B. Buffoni - E.N. Dancer - J. Toland, The subharmonic bifurcation of Stokes waves, Arch. Rational Mech. Anal.152 (2000), 241-271. Zbl0962.76012MR1764946
- [5] H. Cartan, "Calcul differentiel, Hermann, Paris, 1967. Zbl0156.36102MR223194
- [6] M. Crandall - P. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal.8 (1971), 321-340. Zbl0219.46015MR288640
- [7] M. Crandall - P. Rabonowitz, Bifurcation perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal.52 (1973), 161-180. Zbl0275.47044MR341212
- [8] E.N. Dancer, On the uniqueness of the positive solution of a singularly perturbed problem, Rocky Mountain J. Math.25 (1995), 957-975. Zbl0846.35046MR1357103
- [9] E.N. Dancer, On positive solutions of some singularly perturbed problems where the nonlinearity changes sign, Top. Methods Nonlinear Anal.5 (1995), 141-175. Zbl0835.35013MR1350350
- [10] E.N. Dancer, "Weakly nonlinear equations on long or thin domains", Mem. Amer. Math. Soc.501Providence, RI, 1993. Zbl0788.35005MR1157561
- [11] E.N. Dancer, On the structure of solutions of nonlinear eigenvalue problems, Indiana Univ. Math. J.23 (1974), 1069-1076. Zbl0276.47051MR348567
- [12] E.N. Dancer, Global structure of the solution set of non-linear real analytic eigenvalue problems, Proc. London Math. Soc.26 (1973), 359-384.
- [13] E.N. Dancer, Infinitely many turning points for some supercritical problems, to appear in Annali di Matematica. Zbl1030.35073MR1849387
- [14] E.N. Dancer, The G-invariant implicit function theorem in infinite dimensions, Proc. Royal Soc. Edinburgh92A (1982), 13-30. Zbl0512.58011MR667122
- [15] E.N. Dancer, The G-invariant implicit function theorem in infinite dimensions II, Proc. Royal Soc Edinburgh102A (1986), 211-220. Zbl0601.58013MR852355
- [16] E.N. Dancer, Some notes on the method of moving planes, Bull Austra. Math. Soc.46 (1992), 425-434. Zbl0777.35005MR1190345
- [17] B. Gidas, Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations, pp. 255-273 In: "Nonlinear partial differential equations in science and engineering", R. Sternberg (ed.), Marcel Dekker, New York, 1980. Zbl0444.35038MR577096
- [18] B. Gidas, W.M. Ni - L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations on Rn, pp. 369-402 In: "Mathematical Analysis and Applications", Part A, L. Nachbin (ed.), Academic Press, New York, 1981. Zbl0469.35052
- [19] D. Gilbarg - N. Trudinger, "Elliptic partial differential equations of second order", 2nd edition, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
- [20] W. Hayman - P. Kennedy, "Subharmonic functions", Academic Press, London, 1976. Zbl0419.31001
- [21] R. Hewitt - K. Stromberg, "Real and abstract analysis", Springer-Verlag, Berlin, 1965. Zbl0137.03202
- [22] C. Isnard, The topological degree on Banach manifolds, pp. 291-314 In: "Global analysis and its applications", Vol II, International atomic energy agency, Vienna, 1974. Zbl0309.55007MR436193
- [23] T. Kato, "Perturbation theory for linear operators", Springer-Verlag, Berlin, 1966. Zbl0148.12601MR203473
- [24] O. Kavian, "Introduction à la théorie des points critiques", Springer-Verlag, Berlin, 1993. Zbl0797.58005MR1276944
- [25] H. Kielhofer, A bifurcation theorem for potential operators, J. Funct. Anal.77 (1988), 1-8. Zbl0643.47057MR930387
- [26] M.A. Kransnosel'skii, "Topological methods in the theory of nonlinear integral equations", Perganon, New York, 1964.
- [27] M.K. Kwong - Liqun Zhang, Uniqueness of the positive solution of Δu + f(u) = 0, in an annulus, Differential Integral Equations4 (1991), 583-599. Zbl0724.34023
- [28] O. Ladyzhenskaya - N. Uraltseva, "Linear and quasilinear elliptic equations", Academic Press, New York, 1968. Zbl0164.13002MR244627
- [29] P. Rabinowitz, A bifurcation theorem for potential operators, J. Funct. Anal.25 (1977), 412-424. Zbl0369.47038MR463990
- [30] M. Reed - B. Simon, "Methods of modem mathematical physics volume IV: analysis of operators ", Academic Press, New York, 1978. Zbl0401.47001MR493421
- [31] O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal.89 (1990), 1-52. Zbl0786.35059MR1040954
- [32] K. Rybakowski, "The homotopy index and partial differential equations", Springer-Verlag, Berlin, 1987. Zbl0628.58006MR910097
- [33] J. Saut - R. Temam, Generic properties of nonlinear boundary value problems, Comm. Partial Differential Equations4 (1979), 293-319. Zbl0462.35016MR522714
- [34] J. Toland, On positive solutions of -Δu = F(x, u), Math Z.182 (1983), 351-357. Zbl0491.35048
- [35] M.M. Vainberg, "Variational methods for the study of nonlinear operators", Holden Day, San Francisco, 1964. Zbl0122.35501MR176364
- [36] L. Ward, "Topology", Marcel Dekker, New York, 1972. Zbl0261.54001MR467643
- [37] H. Zou, Slow decay and the Harnack inequality for positive solutions of Δu + up = 0 in Rn, Differential Integral Equations8 (1995), 1355-1368. Zbl0849.35028
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.