Hardy-type inequalities related to degenerate elliptic differential operators
- [1] Dipartimento di Matematica Via E. Orabona, 4 I-70125 Bari, Italy
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)
- Volume: 4, Issue: 3, page 451-486
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topD’Ambrosio, Lorenzo. "Hardy-type inequalities related to degenerate elliptic differential operators." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.3 (2005): 451-486. <http://eudml.org/doc/84567>.
@article{D2005,
abstract = {We prove some Hardy-type inequalities related to quasilinear second-order degenerate elliptic differential operators $L_pu:=-\nabla _L^*(\left|\nabla _Lu\right|^\{p-2\}\nabla _Lu)$. If $\phi $ is a positive weight such that $-L_p\phi \ge 0$, then the Hardy-type inequalityholds. We find an explicit value of the constant involved, which, in most cases, results optimal. As particular case we derive Hardy inequalities for subelliptic operators on Carnot Groups.},
affiliation = {Dipartimento di Matematica Via E. Orabona, 4 I-70125 Bari, Italy},
author = {D’Ambrosio, Lorenzo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {451-486},
publisher = {Scuola Normale Superiore, Pisa},
title = {Hardy-type inequalities related to degenerate elliptic differential operators},
url = {http://eudml.org/doc/84567},
volume = {4},
year = {2005},
}
TY - JOUR
AU - D’Ambrosio, Lorenzo
TI - Hardy-type inequalities related to degenerate elliptic differential operators
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 3
SP - 451
EP - 486
AB - We prove some Hardy-type inequalities related to quasilinear second-order degenerate elliptic differential operators $L_pu:=-\nabla _L^*(\left|\nabla _Lu\right|^{p-2}\nabla _Lu)$. If $\phi $ is a positive weight such that $-L_p\phi \ge 0$, then the Hardy-type inequalityholds. We find an explicit value of the constant involved, which, in most cases, results optimal. As particular case we derive Hardy inequalities for subelliptic operators on Carnot Groups.
LA - eng
UR - http://eudml.org/doc/84567
ER -
References
top- [1] Z. M. Balogh, I. Holopainen and J. T. Tyson, Singular solutions, homogeneous norms, and quasiconformal mappings in Carnot groups, Math. Ann. 324 (2002), 159–186. Zbl1014.22009MR1931762
- [2] Z. M. Balogh and J. T. Tyson, Polar coordinates in Carnot groups, Math. Z. 241 (2002), 697–730. Zbl1015.22005MR1942237
- [3] P. Baras and J. A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc. 284 (1984), 121–139. Zbl0556.35063MR742415
- [4] G. Barbatis, S. Filippas and A. Tertikas, Series expansion for Hardy inequalities, Indiana Univ. Math. J. 52 (2003), 171–190. Zbl1035.26014MR1970026
- [5] G. Barbatis, S. Filippas and A. Tertikas, A unified approach to improved Hardy inequalities with best constants, Trans. Amer. Math. Soc. 356 (2004), 2169–2196. Zbl1129.26019MR2048514
- [6] T. Bieske and J. Gong, The P-Laplace Equation on a class of Grushin-type Spaces, Proc. Amer. Math. Soc., to appear. Zbl1107.35007MR2240671
- [7] A. Bonfiglioli and F. Uguzzoni, A Note on Lifting of Carnot groups, Rev. Mat. Iberoamericana. To appear. Zbl1100.35029MR2232674
- [8] A. Bonfiglioli and F. Uguzzoni, Nonlinear Liouville theorems for some critical problems on H-type groups, J. Funct. Anal. 207 (2004), 161–215. Zbl1045.35018MR2027639
- [9] H. Brezis and X. Cabré, Some simple nonlinear PDE’s without solutions, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), 223–262. Zbl0907.35048MR1638143
- [10] H. Brezis and M. Marcus, Hardy’s inequalities revisited, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), 217–237 (1998). Dedicated to Ennio De Giorgi. Zbl1011.46027MR1655516
- [11] H. Brezis, M. Marcus and I. Shafrir, Extremal functions for Hardy’s inequality with weight, J. Funct. Anal. 171 (2000), 177–191. Zbl0953.26006MR1742864
- [12] H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid 10 (1997), 443–469. Zbl0894.35038MR1605678
- [13] L. Capogna, Regularity for quasilinear equations and -quasiconformal maps in Carnot groups, Math. Ann. 313 (1999), no. 2, 263–295. Zbl0927.35024MR1679786
- [14] L. Capogna, D. Danielli and N. Garofalo, An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. Partial Differential Equations 18 (1993), 1765–1794. Zbl0802.35024MR1239930
- [15] L. Capogna, D. Danielli and N. Garofalo, Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations, Amer. J. Math. 118 (1996), 1153–1196. Zbl0878.35020MR1420920
- [16] G. Carron, Inégalités de Hardy sur les variétés riemanniennes non-compactes, J. Math. Pures Appl. (9) 76 (1997), 883–891. Zbl0886.58111MR1489943
- [17] J. Cygan, Subadditivity of homogeneous norms on certain nilpotent Lie groups, Proc. Amer. Math. Soc. 83 (1981), 69–70. Zbl0475.43010MR619983
- [18] L. D’Ambrosio, Hardy inequalities related to Grushin type operators, Proc. Amer. Math. Soc. 132 (2004), 725–734. Zbl1049.35077MR2019949
- [19] L. D’Ambrosio, Some Hardy Inequalities on the Heisenberg Group, Differential Equations 40 (2004), 552–564. Zbl1073.22003MR2153649
- [20] L. D’Ambrosio and S. Lucente, Nonlinear Liouville theorems for Grushin and Tricomi operators, J. Differential Equations 193 (2003), 511–541. Zbl1040.35012MR1998967
- [21] L. D’Ambrosio, E. Mitidieri and S. I. Pohozaev, Representation Formulae and Inequalities for Solutions od a Class of Second Order Partial Differential Equations, Trans. Amer. Math. Soc. (2005), PII S 0002-9947(05)03717-7. Zbl1081.35014MR2177044
- [22] D. Danielli, N. Garofalo and D.-M. Nhieu, Notions of convexity in Carnot groups, Comm. Anal. Geom. 11 (2003), 263–341. Zbl1077.22007MR2014879
- [23] E. B. Davies, The Hardy constant, Q. J. Math. (2) 46 (1995), 417–431. Zbl0857.26005MR1366614
- [24] E. B. Davies and A. M. Hinz, Explicit constants for Rellich inequalities in , Math. Z. 227 (1998), 511–523. Zbl0903.58049MR1612685
- [25] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161–207. Zbl0312.35026MR494315
- [26] G. B. Folland and E. M. Stein, “ Hardy spaces on homogeneous groups”, volume 28 of Mathematical Notes, Princeton University Press, Princeton, N.J., 1982. Zbl0508.42025MR657581
- [27] L. Gallardo, Capacités, mouvement brownien et problème de l’épine de Lebesgue sur les groupes de Lie nilpotents, In: “Probability measures on groups”, Oberwolfach, 1981, volume 928 of Lecture Notes in Math., Springer, Berlin, pp. 96–120. Zbl0483.60072MR669065
- [28] J. P. García Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations 144 (1998), 441–476. Zbl0918.35052MR1616905
- [29] N. Garofalo and E. Lanconelli, Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier (Grenoble) 40 (1990), 313–356. Zbl0694.22003MR1070830
- [30] N. Garofalo and D. Vassilev, Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type, Duke Math. J. 106 (2001), 411–448. Zbl1012.35014MR1813232
- [31] F. Gazzola, H.-C. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms, Trans. Amer. Math. Soc. 356 (2004), 2149–2168. Zbl1079.46021MR2048513
- [32] J. A. Goldstein and Q. S. Zhang, On a degenerate heat equation with a singular potential, J. Funct. Anal. 186 (2001), 342–359. Zbl1056.35093MR1864826
- [33] P. C. Greiner, A fundamental solution for a nonelliptic partial differential operator, Canad. J. Math. 31 (1979), 1107–1120. Zbl0475.35003MR546962
- [34] J. Heinonen, Calculus on Carnot groups, In: “Fall School in Analysis” (Jyväskylä, 1994), volume 68 of Report . Univ. Jyväskylä, Jyväskylä, pp. 1–31. Zbl0863.22009MR1351042
- [35] J. Heinonen and I. Holopainen, Quasiregular maps on Carnot groups, J. Geom. Anal. 7 (1997), 109–148. Zbl0905.30018MR1630785
- [36] A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), 147–153. Zbl0393.35015MR554324
- [37] I. Kombe, Nonlinear degenerate parabolic equations for Baouendi-Grushin operators (2004), preprint. Zbl1117.35039MR2226410
- [38] G. Lu, J. Manfredi and B. Stroffolini, Convex functions on the Heisenberg group, Calc. Var. Partial Differential Equations 19 (2004), 1–22. Zbl1072.49019MR2027845
- [39] V. Magnani, Lipschitz continuity, Aleksandrov theorem and characterizations for H-convex function (2003). URL http://cvgmt.sns.it/papers/mag03a, Preprint. Zbl1115.49004MR2208954
- [40] M. Marcus, V. J. Mizel and Y. Pinchover, On the best constant for Hardy’s inequality in , Trans. Amer. Math. Soc. 350 (1998), 3237–3255. Zbl0917.26016MR1458330
- [41] T. Matskewich and P. E. Sobolevskii, The best possible constant in generalized Hardy’s inequality for convex domain in , Nonlinear Anal. 28 (1997), 1601–1610. Zbl0876.46025MR1431208
- [42] T. Matskewich and P. E. Sobolevskii, The sharp constant in Hardy’s inequality for complement of bounded domain, Nonlinear Anal. 33 (1998), 105–120. Zbl0930.26009MR1621089
- [43] V. G. Maz’ja, “Sobolev spaces”, Springer Series in Soviet Mathematics. Springer-Verlag, Berlin 1985. Translated from the Russian by T. O. Shaposhnikova. MR817985
- [44] E. Mitidieri, A simple approach to Hardy inequalities, Mat. Zametki 67 (2000), 563–572. Zbl0964.26010MR1769903
- [45] E. Mitidieri and S. I. Pohozaev, Nonexistence of weak solutions for some degenerate elliptic and parabolic problems on , J. Evol. Equ. 1 (2001), 189–220. Zbl0988.35095MR1846746
- [46] E. Mitidieri and S. I. Pohozaev, A priori estimates and blow-up of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math. 234 (2001), 1–362. Zbl0987.35002MR1879326
- [47] P. Niu, H. Zhang and Y. Wang, Hardy-type and Rellich type inequalities on the Heisenberg group, Proc. Amer. Math. Soc. 129 (2001), 3623–3630. Zbl0979.35035MR1860496
- [48] S. Secchi, D. Smets and M. Willem, Remarks on a Hardy-Sobolev inequality, C. R. Math. Acad. Sci. Paris 336 (2003), 811–815. Zbl1035.35020MR1990020
- [49] J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal. 173 (2000), 103–153. Zbl0953.35053MR1760280
- [50] H. Zhang and P. Niu, Hardy-type inequalities and Pohozaev-type identities for a class of -degenerate subelliptic operators and applications, Nonlinear Anal. 54 (2003), 165–186. Zbl1033.47033MR1978971
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.